
15-410, F'161

Errors
Sep. 16, 2016

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

L08a_Errors

15-410
“...Should we “crash”?...”

15-410, F'162

Outline

Three kinds of errorThree kinds of error

Important to classify & react appropriatelyImportant to classify & react appropriately

15-410, F'163

Outline

Three kinds of errorThree kinds of error
 ?
 ?
 ?

Important to classify & react appropriatelyImportant to classify & react appropriately

Outline

Three kinds of errorThree kinds of error
 Hmm...
 That's not right...
 Uh-oh...

Important to classify & react appropriatelyImportant to classify & react appropriately

15-410, F'165

“New Player” - Take 1

// Improve memory locality:
// store players in array; use index, not ptr
struct player players[MAX];
int new_player(int team, int num)
{
 int i;
 if ((i = emptyslot()) == -1) {
 /* OH NO!!! */
 MAGIC_BREAK;
 }
 ...
}

15-410, F'166

“New Player” - Take 2

// Improve memory locality:
// store players in array; use index, not ptr
struct player players[MAX];
int new_player(int team, int num)
{
 int i;
 if ((i = emptyslot()) == -1) {
 /* OH NO!!! */
 while(1)
 continue;
 }
 ...
}

15-410, F'167

What's Going On?

““Out of table slots” - what kind of thing?Out of table slots” - what kind of thing?
 Should really never happen?
 Might happen sometimes?
 Likely to happen once a day?

15-410, F'168

What's Going On?

““Out of table slots” - what kind of thing?Out of table slots” - what kind of thing?
 Should really never happen?
 Might happen sometimes?
 Likely to happen once a day?

 Remember: users always want 110%!

What's Going On?

““Out of table slots” - what kind of thing?Out of table slots” - what kind of thing?
 Should really never happen?
 Might happen sometimes?
 Likely to happen once a day?

 Remember: users always want 110%!

What to do?What to do?
 Resolve reasonable issues when possible

 How to resolve this one?

15-410, F'1610

“New Player” - Take 3

struct player *players;
int playerslots;
int new_player(int team, int num)
{
 int i;
 if ((i = emptyslot()) == -1) {
 if ((i = grow_table_and_alloc()) == -1)
 /* OH NO!!! */
 while(1)
 continue;
 }
 ...
}

15-410, F'1611

What's Going On?

““Out of heap space” - what kind of thing?Out of heap space” - what kind of thing?
 Should really never happen?
 Might happen sometimes?
 Likely to happen once a day?

15-410, F'1612

What's Going On?

““Out of heap space” - what kind of thing?Out of heap space” - what kind of thing?
 Should really never happen?
 Might happen sometimes?
 Likely to happen once a day?

My suggestionMy suggestion
 “Might happen sometimes”

What to do?What to do?
 Hard to say what the right thing is for all clients

 Is it fatal or not?

 Often: pass the buck

15-410, F'1613

“New Player” - Take 4

struct player *players;
int playerslots;
int new_player(int team, int num)
{
 int i;
 if ((i = emptyslot()) == -1) {
 if ((i = grow_table_and_alloc()) == -1)
 return (-1);
 }
 ...
}

15-410, F'1614

“Free Player” - Take 1

void free_player(int slot)
{
 assert((slot >= 0)&&(slot < total_slots));
 struct player *p = &players[slot];
 switch(p->role) {
 case CONTENDER:
 free(p->cstate); break;
 case REFEREE:
 free(p->refstate); break;
 }
 free(p->generic);
 mark_slot_available(slot);
}

15-410, F'1615

What's Wrong?

There is a sanity-check missing...There is a sanity-check missing...
 Probably somebody will make a mistake eventually
 Let's catch it

15-410, F'1616

“Free Player” - Take 2

void free_player(int slot)
{
 assert((slot >= 0)&&(slot < total_slots));
 struct player *p = &players[slot];
 switch(p->role) {
 case CONTENDER:
 free(p->cstate); break;
 case REFEREE:
 free(p->refstate); break;
 default: return;
 }
 free(p->generic);
 mark_slot_available(slot);
}

15-410, F'1617

All Fixed?

15-410, F'1618

All Fixed?

No!No!
 The program has a bug

 Maybe the client is passing us stale player pointers
 Maybe we are handing out invalid p->role values

 We happened to catch the bug this time
 We might not catch it every time!

 Sometimes a stale player pointer might have a “valid” p->role

The program is The program is brokenbroken
 Hiding the problem isn't our job
 Hiding the problem isn't even defensible

15-410, F'1619

Should We “Crash”?

If the program is “broken”, should we “crash”?If the program is “broken”, should we “crash”?
 Often: yes

 Dumping core allows debugger inspection of the problem
 Throwing running program into a debugger is probably nicer

15-410, F'1620

Summary

Three kinds of errorThree kinds of error
 Hmm...

 Try to resolve

 That's not right...
 Try to report

 Uh-oh...
 Try to help the developer find the problem faster

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

