
1 

Introduction to 15-410/605 

 
 

Dave Eckhardt 
de0u@andrew.cmu.edu 

 
Dave O’Hallaron 
droh@cs.cmu.edu 

 



2 

Course Numbers 

l  Undergraduate ⇒ 15-410 
l  ECE M.S. students ⇒ probably want 15-605 
l  SCS M.S. students, INI M.S. students ⇒ 15-605 
l  Ph.D. students ⇒ might want 15-799A 
-  Probably not this semester, but could be S'17? 
-  Discussed with your advisor?  See Prof Eckhardt? 

l  Other – consult your advisor 
-  Your advisor must contact Prof Prof Eckhardt 



3 

Wait List 

l  Registrar's wait-list order is irrelevant  
-  He has his ordering, we have ours 
-  We admit based on readiness (mixed with need) 
-  Usually our estimate centers on your advisor   

l  There may not be room for everybody 
-  Some students will need to try again next semester 

l  If you're not on the wait list yet, you are invisible  
-  Invisible students definitely won't get into the course! 
-  If you are invisible, send mail before noon today  



4 

Wait List 

l  Background material (15-213) is not optional  
-  M.S. students: take 213 and get an A (B may be ok) 
-  Ph.D. students: have your advisor contact Prof Eckhardt 

l  Rare exceptions exist 
-  Took a course with the 213 textbook – see Prof Eckhardt 
-  Multiple years of specific industry experience – consult 

your advisor (today) 
l  Otherwise, please switch to 213 wait list instead 
l  213 may not be enough (depending on background) 



Wait List 
l  ECE 
-  Seniors: likely; encourage your advisor to contact Prof 

Eckhardt 
-  Juniors: plausible; encourage your advisor to help Prof 

Eckhardt prioritize 
-  M.S.: if you got “talk to your advisor” mail, must; 

otherwise: plausible 
l  INI 
-  50/50?  I am awaiting input from INI 

l  Others?  I must hear from your advisor!  
l  You must read your e-mail!!!  



Logistical Query #1 

l  Who has a class that conflicts with the 410 
lecture? 
-  Contact Prof Eckardt after class (potential for big 

trouble) 



Logistical Query #2 

l  Who had trouble with 213? 
-  Contact Prof Eckhardt after class (potential for big 

trouble) 
-  If you didn't get a B or an A, see him  
-  If the malloc() lab didn't go well, see him 



8 

Self-Assessment 

l  Self-assessment exercise on course web site? 
-  Not mandatory if you did well in 15-213 
-  A very good sanity-check, though! 



9 

Textbook (traditional) 

l  Option 1 
-  Operating System Concepts, 8th edition 

l  Silberschatz, Galvin, & Gagne 

l  Multiple “cheap” options exist! 
-  eBay/Amazon/Alibris/... 
-  If you try an e-book edition instead of paper, please 

tell us if you like it 
-  Used copies of 7th edition work pretty well 

l  Web site lists reading assignments for 6th through 8th 
editions 



10 

Textbook (experimental) 

l  Option 2 
-  Operating Systems: Principles & Practice 

l  Anderson & Dahlin 

l  Main differences 
-  More focus on typical modern kernels and hardware 
-  Less focus on historical systems 
-  Stronger coverage of file systems and storage 
-  Weaker coverage of security 

l  Available online 



11 

Textbook (which one?) 

l  We think you can use either one 
-  Heavily-tested material is typically covered in lecture 

and projects 

l  We are interested in your opinion! 
-  Which one, physical book vs. e-book, e-book 

purchase vs. rental... 
-  We will ask for your thoughts at the end of the 

semester 



12 

Outline 

l  People 
l  Administrative information 
-  Academic conduct 

l  Class goals 
l  Reading material 



13 

Dave Eckhardt 

l  Associate Teaching Professor, CS 
-  Ph.D., Computer Science, CMU, 2002 

l  “An Internet-style Approach to Managing Wireless Link 
Errors” 

-  http://www.cs.cmu.edu/~davide  
l  Building Unix kernels since ~1985 
-  PDP-11, Version 7 Unix 
-  “Not really a BSD bigot” 



Dave O’Hallaron 
l  Professor, CS and ECE 
-  Ph.D., CS, Univ of Virginia, 1986 

l  “Models for Concurrent Programming” 

-  http://www.cs.cmu.edu/~droh  
l  Former Director, Intel Labs Pittsburgh 
l  co-author: Bryant and O’Hallaron, “Computer 

Systems: A Programmer’s Perspective: 3rd Edition” 
l  co-creator (with R. Bryant) of 15-213 
l  Research: High Performance Computing 



15 

TA's 

l  Mixture of “repeat offenders” and “this year's 
model” 

l  As a team 
-  Strong background 
-  Here to help! 



16 

Yinz - Reading 

l  Read a Ph.D. thesis? 
l  Academic journal article? 
l  Attended an academic conference? 
l  Read a non-class CS book last semester? 



17 

Information Sources 

Web site http://www.cs.cmu.edu/~410 
-  You are utterly required to read the syllabus 

 

Q: Can I used a linked list for...? 
Q: I have a final exam conflict... 
Q: The license server is down... 
Q: AFS says “no such device”... 

-  A: staff-410@cs.cmu.edu 



18 

Information Sources 

Q: I am experiencing [delicate situation X] ... 
A: e-mail to faculty 
 
Note: most likely no Piazza this semester 

-  Experiment was run in a previous semester 
-  Results equivocal 



19 

Course Goals 

l  Operating Systems 
-  What they are 
-  Design decisions 
-  Actual construction 

l  Team programming 
-  Design, documentation 
-  Source control 
-  People skills 



20 

Course Plan 

l  Lectures 
-  Many topics will be covered by text 
-  But skipping many lectures will challenge your grade 

l  The map is not the terrain, the slides are not the lecture 
l  You will miss Q&A 

-  We expect you to attend lectures 
l  Details: see syllabus 



21 

Course Plan 

l  Projects 
-  “Stack crawler” - readiness check [1-person project] 
-  Bare-machine video game [1-person project] 
-  Thread library 
-  OS kernel 
-  Kernel extension 

l  Project environment 
-  Wind River Simics™ PC simulator 
-  Your projects can also run on real PC hardware 



22 

Course Plan 

l  Homework assignments 
-  ~2, to deepen understanding of selected topics 

l  Reading assignment 
-  Pick something fun, write a brief report 

l  Mid-term, Final exam 
-  Closed-book 



23 

Team programming 

l  Why? 
-  Allows attacking larger problems 
-  Teaches job skills you will need 

l  Setting milestones 
l  Setting up a productive work flow 
l  Involving “management” before it's too late 

l  Team programming != “software engineering” 
-  No requirement analysis 
-  No release staging, design for growth, ... 
-  Not a complete “life cycle” 



24 

Health Problems 

l  Somebody will probably get mono or pneumonia 
-  If not, only because of something more creative 

l  Work-blocking health problem? 
-  Go early to University Health (etc.) 
-  Avoid “For the past two weeks I dragged myself to 

class but couldn't focus on programming” 
-  Try to get paper documentation of work restrictions 
-  Your program administrator will inform instructors 

l  CS: cathyf@cs ; ECE: jmpeters@ece / 
woodhead@andrew ; ... 



25 

Partner Problems 

l  Somebody will have serious partner trouble 
-  You need to “involve management” early 

l  Sometimes (50%) we can fix the problem 
l  If the problem can't be fixed, we can reduce the fallout 

-  ...only if we know while the trouble is happening 

-  Don't “buffer up” partner trouble until the last week of 
classes 

l  At that point, we basically can't help 
-  Details: see syllabus 



26 

Academic honesty 

l  See syllabus! 
-  Reading the syllabus on this topic is not optional 

l  Learning is good 
-  ...practices which avoid learning are double-plus 

ungood 
l  Plagiarism is bad 
-  ...credit must be given where due 

l  “Outside code” is not a simple yes/no issue 
-  You must not read any outside code without carefully 

consulting the syllabus 



27 

Academic conduct 

l  Being a partner 
-  Responsible 

l  I am writing three grad school applications next week 

-  Irresponsible 
l  [vanish for 1 week, drop class] 



28 

Closing 

l  comp.risks newsgroup 
-  Developers should read this 
-  Managers should read this 
-  Journalists should read this 

l  OSC textbook 
-  Chapters 1, 2; Chapter 13.1, 13.2, 13.3.3 

l  OS:P+P textbook 
-  Chapters 1, 2; Sections 3.0, 3.5; Section 11.3 

l  Start choosing a partner for P2/P3 



29 

Grading philosophy 

l  C – all parts of problem addressed 
l  B – solution is complete, stable, robust 
l  A – excellent 
-  Somebody might want to re-use some of your code 

l  Numbers 
-  A = 90-100%, B = 80-90%, ... (roughly) 

l  “Curving”?  Maybe, not necessarily 
-  Lots of A's would be fine with us 
-  But this requires clean, communicative code! 



30 

Todd Mowry 

l  Professor, CS 
-  Ph.D., EE, Stanford, 1994 

l  “Tolerating Latency Through Software-Controlled Data 
Prefetching” 

-  http://www.cs.cmu.edu/~tcm  
l  Former Director, Intel Labs Pittsburgh 
l  Research: Log-Based Architectures 



31 

Todd Mowry 

l  Professor, CS 
-  Ph.D., EE, Stanford, 1994 

l  “Tolerating Latency Through Software-Controlled Data 
Prefetching” 

-  http://www.cs.cmu.edu/~tcm  
l  Former Director, Intel Labs Pittsburgh 
l  Research: Log-Based Architectures 

Carl Sandburg NHS, nps.gov 



32 

Todd Mowry 

l  Professor, CS 
-  Ph.D., EE, Stanford, 1994 

l  “Tolerating Latency Through Software-Controlled Data 
Prefetching” 

-  http://www.cs.cmu.edu/~tcm  
l  Former Director, Intel Labs Pittsburgh 
l  Research: Log-Based Architectures 



33 

Garth Gibson 

l  Professor of CS and ECE 
-  Ph.D., Computer Science, Berkeley, 1991 

l  “Redundant Disk Arrays: Reliable, Parallel Secondary Storage” 
-  http://www.cs.cmu.edu/~garth 

l  Research: Big Data Systems 
-  Founder, CMU Parallel Data Lab (pdl.cmu.edu) 
-  Founder, Panasas, Inc. (scalable object storage; panasas.com) 
-  Manages 1.5 TF Hadoop/MapReduce cluster for CMU eScience 

(www2.pdl.cmu.edu) 
-  Manages Linux pNFS prototype developers (wiki.linux-nfs.org) 



Garth Gibson 

l  Professor of CS and ECE 
-  Ph.D., Computer Science, Berkeley, 1991 

l  “Redundant Disk Arrays: Reliable, Parallel Secondary Storage” 
-  http://www.cs.cmu.edu/~garth 

l  Research: Big Data Systems 
-  Founder, CMU Parallel Data Lab (pdl.cmu.edu) 
-  Founder, Panasas, Inc. (scalable object storage; panasas.com) 
-  Manages 1.5 TF Hadoop/MapReduce cluster for CMU eScience 

(www2.pdl.cmu.edu) 
-  Manages Linux pNFS prototype developers (wiki.linux-nfs.org) 



35 

Roger Dannenberg 

l  Professor of CS, Art & Music 
-  Ph.D., Computer Science, CMU, 1982 

l  “Resource Sharing in a Network of Personal Computers” 

-  www.cs.cmu.edu/~rbd 

l  Research: Computer Music (Systems) 
l  Co-designer of Audacity audio editor 
l  Patents behind SmartMusic & Rock Prodigy 

l  Co-director of Music and Technology B.S. & M.S. 

l  Performed live on MTV 



36 

Yinz - Background 

l  Junior/senior/other? 
l  CS/ECE/INI/other? 
l  Group programming before? 
l  Done a branch merge before? 



37 

Yinz – Career plans 

l  Industry 
l  Graduate school 
l  Law/med/business school? 
l  Mountain top? 



38 

Team programming – Styles 

l  Waterfall model 
l  Spiral model 
l  “Extreme Programming” 
l  “Pair Programming” 
-  Williams & Kessler, Pair Programming 

l  What you choose is up to you 
-  This is an opportunity to read about models 



39 

Team programming - Design 

l  Decomposition into modules 
-  (Yes, we expect modularity even in C!) 

l  Design for team implementation 
-  May need to adjust design to work in parallel 



40 

Team programming - Documentation 

l  For the non-compiler consumers of source code 
l  Doxygen documentation extraction system 
-  Embed documentation in comments 
-  Generate HTML index 
-  Generate LaTeX 
-  ... 

l  We intend to read your documentation 
l  We intend to read your code 



41 

Team programming - Source control 

l  Other buzzwords 
-  Revision control, configuration management 

l  Goals 
-  Re-create past builds 
-  Compare stable states 
-  Control inter-developer interference 
-  [Manage multiple shipped product versions] 



42 

Team programming - Source control 

l  Even for “small” projects? 
-  “It worked 3 hours ago, now it dies on start-up” 
-  “I thought I fixed that already!” 

 
l  Most students who really try it keep using it 



43 

Team programming - people skills 

l  Working with other people is hard 
-  People think differently 
-  People plan differently 

l  Pre-planning 
-  Agree on work style, arrangements 

l  Setting milestones 
l  Pre-scheduled common time slots 

l  Handling problems 
-  Involving “management” before it's too late 

l  See syllabus 


