
15-410, F’13 1 1	

File System (Interface)
Nov. 13, 2013

Dave Eckhardt & Todd Mowry
Contributions from

n  Rahul Iyer

L31_Filesystem

15-410
“...RADIX-50??...”

15-410, F’13 2 2	

Synchronization

Today
n  Chapter 10, File system interface

n  Ok to skip: remote/distributed (10.5.2!!)

Also read Chapter 13
n  Might help demystify readline() some

15-410, F’13 3 3	

What's a file?

Abstraction of persistent storage
n  Hide details of storage devices

n  sector addressing: CHS vs. LBA
n  SCSI vs. IDE

n  Hide details of allocation/location on a storage device

Logical grouping of data
n  May be physically scattered

Programs, data
Some internal structure

15-410, F’13 4 4	

Typical file attributes

Name – 14 characters? 8.3? 255?
n  Unicode? ASCII? 6-bit? RADIX-50?

Identifier – “file number” (usually internal)
Type (or not) – hint for launching app, or not
Location – device, block list
Size – two meanings (next lecture)
Protection – Who can do what?
Time, date, last modifier – monitoring, cleaning up

15-410, F’13 5 5	

“Extended” file attributes

BSD Unix
n  archived
n  nodump
n  append-only (by user/by operating system)
n  immutable (by user/by operating system)

MacOS
n  icon color

Plan 9
n  Identity of most recent mutator

15-410, F’13 6 6	

Operations on Files

Create – locate space (maybe), enter into directory
Write, Read – often via position pointer/“cursor”
Seek – adjust position pointer for next access
Delete – remove from directory, release space (maybe)
Truncate

n  Trim some data from end of file (common case: all data)

Append – write at end of file (implicit synchronization)
Rename

n  Change name of file inside a directory
n  Move a file between two directories (maybe)

15-410, F’13 7 7	

I/O to a File – Take 1

Users will read/write files
n  Not being able to defies the point in having them

So, how do you read from and write to one?
n  read(“README.dox”, input_buffer, num_bytes);

n  What's the problem with this?

15-410, F’13 8 8	

I/O to a File – Take 1

Users will read/write files
n  Not being able to defies the point in having them

So, how do you read from and write to one?
n  read(“README.dox”, input_buffer, num_bytes);

n  What's the problem with this?
n  read(“README.dox”, input_buffer, num_bytes, start_loc);

n  What's the problem with this?

What's the solution?

15-410, F’13 9 9	

I/O to a File – Take 2:
Open-file State
Expensive to specify name for each read()/write()

n  String-based operation
n  Directory look-up

Add an open() operation
n  Adds “state”

“Open-file” structure stores:
n  File-system / partition
n  File-system-relative file number
n  Operations allowed: eg., Read vs. write
n  Cursor position

Something still missing?

15-410, F’13 10 10	

Open files (Unix Model)

“In-core” file state – avoid going to disk repeatedly
n  Mirror of on-disk structure

n  File number, size, permissions, modification time, ...
n  Housekeeping info

n  Back pointer to enclosing file system
n  Pointer to disk device hosting the file
n  Who holds locks on ranges of file

n  How to access file (vector of methods)
n  Pointer to file's type-specific data

Shared when file is opened multiple times

15-410, F’13 11 11	

Open files (Unix Model)

“Open file” state – result of one open() call
n  Results are retained for use by multiple I/O calls

n  Pointer to underlying “open file”
n  Credentials of process (when it opened the file)
n  Access mode (read vs. write, auto-append, ...)
n  Cursor position

Shared by multiple processes
n  “copied” by fork()
n  inherited across exec()

15-410, F’13 12 12	

Example

int fd1, fd2, fd3;
off_t pos2, pos3;
char buf[10];

fd1 = open(“foo.c”, O_RDONLY, 0);
fd2 = dup(fd1);
fd3 = open(“foo.c”, O_RDONLY, 0);
read(fd1, &buf, sizeof (buf));

pos2 = lseek(fd2, 0L, SEEK_CUR); /* ⇒? */
pos3 = lseek(fd3, 0L, SEEK_CUR); /* ⇒? */

15-410, F’13 13 13	

Example

int fd1, fd2, fd3;
off_t pos2, pos3;
char buf[10];

fd1 = open(“foo.c”, O_RDONLY, 0);
fd2 = dup(fd1);
fd3 = open(“foo.c”, O_RDONLY, 0);
read(fd1, &buf, sizeof (buf));

pos2 = lseek(fd2, 0L, SEEK_CUR); /* 10 */
pos3 = lseek(fd3, 0L, SEEK_CUR); /* 0 */

15-410, F’13 14 14	

“Open File” vs. “In-Core File”

Process
fd1:	 3
fd2:	 4
fd3:	 5

0

1
2

3

4

5 vnode	 #334
readers:	 2
writers:	 0

ttyp5
rows:	 24
cols:	 80

r/o

r/w

r/o
pos	 10

r/o
pos	 0

15-410, F’13 15 15	

File types (or not)

Goal
n  Avoid printing a binary executable file
n  Find program which “understands” a file selected by user

Derive “type” from file names
n  *.exe are executable, *.c are C

Tag file with type information (extended attributes)
n  MacOS: 4-byte type, 4-byte creator

Unix: Both/neither
n  Leave it (mostly) up to users (maybe: GUI, libraries, etc.)

15-410, F’13 16 16	

File Structure

What's in a file?
n  Stream of bytes?

n  What character set? US-ASCII? Latin-1? Unicode?
n  Stream of records?
n  Array of records? Tree of records?

Record structure?
n  End of “line”

n  CR, LF, CR+LF
n  Fixed-length? Varying? Bounded?

15-410, F’13 17 17	

File Structure - Unix

Program loader needs to know about executables
n  “Magic numbers” in first two bytes

n  obsolete A.OUT types - OMAGIC, NMAGIC, ZMAGIC
n  ELF
n  #! - script

Otherwise, array of bytes
n  User/application remembers meaning (hopefully!)

For a good time...
n  Try the “file” command
n  Read /usr/share/misc/magic or /usr/share/file/magic

n  Marvel at the dedication of the masses – 16,000 lines!

15-410, F’13 18 18	

File Structure – MacOS “Classic”

Data fork
n  Array of bytes
n  Application-dependent structure

Resource fork
n  Table of resources

n  Icon, Menu, Window, Dialog box
n  Many resources are widely used & understood

n  Desktop program displays icons from resource fork

Effects still emulated in OS X
n  Though implementation may differ

15-410, F’13 19 19	

“Access Methods”

Provided by OS or optional program library
Sequential

n  Like a tape
n  read() next, write() next, rewind()
n  Sometimes: skip forward/backward

Direct/relative
n  Array of fixed-size records
n  Read/write any record, by #

15-410, F’13 20 20	

Access Methods – Indexed

File contains records
Records contain keys
Index maps keys ⇒ records

n  Sort data portion by key
n  Binary search in multi-level list

Fancy extensions
n  Multiple keys, multiple indices
n  Are we having a database yet?

n  Missing: relations, triggers, consistency, transactions, ...
n  Unix equivalent: dbm/ndbm/gdbm/bdb/...

15-410, F’13 21 21	

Directory Operations

Lookup(“index.html”)
Create(“index.html”)
Delete(“index.html”)
Rename(“index.html”, “index.html~”);
Iterate over directory contents
Scan file system

n  Unix “find” command
n  Backup program

“Log changes to directory tree ____”

15-410, F’13 22 22	

Directory Types

Single-level
n  Flat global namespace – only one test.c
n  Ok for floppy disks (maybe)

Two-level
n  Every user has a directory
n  One test.c per user

n  [1003,221]PROFILE.CMD vs. [1207,438]PROFILE.CMD
n  Typical of early timesharing

Are we having fun yet?

15-410, F’13 23 23	

Tree Directories

Absolute Pathname
n  Sequence of directory names
n  Starting from “root”
n  Ending with a file name

15-410, F’13 24 24	

Tree Directories

eckhardt

students

irwin

bob bin

sh ls

usr

mji

/

sh.c

15-410, F’13 25 25	

Tree Directories

Directories are special files
n  Created with special system calls – mkdir()
n  Format understood & maintained by OS

Current directory (“.”)
n  “Where I am now” (e.g., /usr/zzz)
n  Start of relative pathname

n  ./stuff/foo.c or stuff/foo.c ⇒ /usr/zzz/stuff/foo.c
n  ../joe/foo.c ⇒ /usr/joe/foo.c

n  Directory reference in, e.g., p->p_fd->fd_cdir

15-410, F’13 26 26	

DAG Directories

Share files and directories
between users
Not mine, not yours: ours
Destroy when everybody
deletes
Unix “hard link”

n  Remove an open file?
n  Stays “alive” until last

close
n  Files, not directories

n  (“.. problem”)

usr

mji

/

paper.ms

owens

15-410, F’13 27 27	

Soft links

Hard links “too hard”?
n  Need a level of indirection in file system?
n  Want “one true name” for a file?
n  Need to cross to a different file system of a different type?

Alternative: soft link / symbolic link / “short cut”
n  Tiny file, special type
n  Contains name of another file
n  OS dereferences link when you open() it

n  Link can point to a file anywhere
n  A file in a different type of file system
n  A remote file

15-410, F’13 28 28	

Hard vs. Soft Links

Hard links
n  Enable reference-counted sharing
n  No name is “better” than another

Soft links
n  Can soft-link a directory

n  one “true” parent, so no “.. problem”
n  Work across file system & machine boundaries
n  Easier to explain
n  “Dangling link” problem

n  Owner of “one true file” can delete it
n  Soft link now points to nothing

15-410, F’13 29 29	

Cyclic Graph Directories

Depth-first traversal can
be slow!
May need real garbage
collection
Do we really need this?

usr

mji

/

owens

top

15-410, F’13 30 30	

Mounting

Multiple disks on machine
Multiple partitions on disk
File system within a partition

n  Or, within a volume / logical volume / ...

How to name files in “another” file system?
n  Wrong way

n  C:\temp vs. D:\temp
n  [1003,221]PROFILE.CMD vs. [1207,438]PROFILE.CMD

15-410, F’13 31 31	

Mounting

mji owens

/

dae jdi

/

usr0 usr1

/

15-410, F’13 32 32	

Multiple Users

Users want to share files
What's a user?

n  Strings can be cumbersome
n  Integers are nicer for OS to compare
n  Unix: User ID / “uid”
n  Windows: Security ID / “SID”

What's a group?
n  A set of users
n  Typically has its own gid / SID

15-410, F’13 33 33	

Protection

Override “bit” (e.g., MS-DOG)
n  Bit says “don't delete this file”

n  Unless I clear the bit

Per-file passwords
n  Annoying in a hurry

Per-directory passwords
n  Still annoying

15-410, F’13 34 34	

Protection

Access modes
n  Read, Write, Execute, Append, Delete, List, Lock, ...

Access Control List (ACL)
n  File stores list of (user, modes) tuples
n  Cumbersome to store, view, manage

Capability system
n  User is given a list of (file, access keys) tuples
n  Revocation problem

15-410, F’13 35 35	

Protection – typical

File specifies owner, group
n  Permissions for owner, permissions for group members

n  Read, write, ...
n  Permissions for “other” / “world”

n  Read, write, ...

Unix
n  r, w, x = 4, 2, 1
n  r w x r – x - — x = 0751 (octal)
n  V7 Unix: 3 16-bit words specified all permission info

n  permission bits, user #, group #
n  As of 2013-03-25, Andrew supports ~33,963 users... 16

bits is a little tight.

15-410, F’13 36 36	

Summary

File
n  Abstraction of disk/tape storage

n  Records, not sectors
n  Type information

n  Naming
n  Complexity due to linking

n  Ownership, permissions
n  Semantics of multiple open()s

Extra details in 20.7, 20.8

15-410, F’13 37 37	

The “.. Problem”

Foo

Bar

$ ln .. bar

