
15-410, F'131

The Thread
Sep. 11, 2013

Dave EckhardtDave Eckhardt

Todd MowryTodd Mowry

L07_Thread

15-410

“Real concurrency – in which one program actually
continues to function while you call up and use
another – is more amazing but of small use to the
average person. How many programs do you have
that take more than a few seconds to perform any
task?” – NYT, 4/25/1989

15-410, F'132

Synchronization

Partner sign-upPartner sign-up
 Looks like we may be done!

 Though somebody may drop during P1

Project 1Project 1
 By end of Wednesday...

 Console (output) should be “doing something”, “not far”
 Should have “some progress” for kbd, timer

» Should really have at least “solid design”

» Better to have handled one interrupt once

Write good codeWrite good code
 Console driver will be used (and extended) in P3

15-410, F'133

Synchronization

Simics issuesSimics issues
 Simics doesn't simulate time with 100% accuracy

 Mentioned in handout, but:

» Sometimes it runs slower (“of course”)

» Sometimes it runs faster (!)

 Simics doesn't blink
 Not your fault

 Arrow keys may not work “so well”
 We're looking into it
 Crash box!

15-410, F'134

Readings

Textbook chaptersTextbook chapters
 OSC

 Already: Chapters 1 through 3
 Today: Chapter 4 (roughly)
 Soon: Chapters 6 & 7

» Transactions (6.9) will be deferred

 OS:P+P
 Already: Chapters 1 through 3
 Today: Chapter 4 (roughly/partly)
 Soon: Chapter 6

 Remember: reading schedule is on the “schedule” page

15-410, F'135

Book Report Goals

Some of you are going to grad. schoolSome of you are going to grad. school

Some of you are wondering about grad. schoolSome of you are wondering about grad. school

Some of you are Some of you are inin grad. school grad. school
 You should be able to read a Ph.D. dissertation

More generallyMore generally
 Looking at something in depth is different
 Not like a textbook

15-410, F'136

Book Report Goals

There's more than one way to do itThere's more than one way to do it
 But you don't have time to try all the ways in 410
 Reading about other ways is good, maybe fun

HabituationHabituation
 Long-term career development requires study

Writing skills (a little!)Writing skills (a little!)
 “Summarizing” a book in a page is tough

15-410, F'137

Book Report

Read the “handout”Read the “handout”

Browse the already-approved listBrowse the already-approved list

Pick something (soon)Pick something (soon)
 “Don't make me stop the car...”

Read a bit before you sleep at nightRead a bit before you sleep at night
 or: before you sleep in the morning
 and/or: Thanksgiving break / Spring break

Assignment recommended by previous OS students!Assignment recommended by previous OS students!
 They recommend starting early, too

15-410, F'138

Road Map

Thread lectureThread lecture

Synchronization lecturesSynchronization lectures
 Probably three

Yield lectureYield lecture

This is importantThis is important
 When you leave here, you will use threads
 Understanding threads will help you understand the

kernel

Please make sure you Please make sure you understandunderstand threads threads
 We'll try to help by assigning you P2

15-410, F'139

Outline

Thread = schedulable registersThread = schedulable registers
 (that's all there is)

Why threads?Why threads?

Thread flavors (ratios)Thread flavors (ratios)

(Against) cancellation(Against) cancellation

Race conditionsRace conditions
 1 simple, 1 ouch
 Make sure you really understand this

15-410, F'1310

Single-threaded Process

Stack

Code
Data
Heap

Registers

stdin

stdout

timer

15-410, F'1311

Multi-threaded Process

stdin

stdout

timer

Code
Data
Heap

Stack Registers
Stack Registers
Stack Registers

15-410, F'1312

What does that mean?

Three stacksThree stacks
 Three sets of “local variables”

Three register setsThree register sets
 Three stack pointers
 Three %eax's (etc.)

Three Three schedulable RAM mutatorsschedulable RAM mutators
 (heartfelt but partial apologies to the ML crowd)

Three potential bad interactions Three potential bad interactions
 A/B, A/C, B/C ... this pattern gets worse fast...

15-410, F'1313

Why threads?

Shared access to data structuresShared access to data structures

ResponsivenessResponsiveness

Speedup on multiprocessorsSpeedup on multiprocessors

15-410, F'1314

Shared access to data structures

Database server for multiple bank branchesDatabase server for multiple bank branches
 Verify multiple rules are followed

 Account balance
 Daily withdrawal limit

 Multi-account operations (transfer)
 Many accesses, each modifies tiny fraction of database

Server for a multi-player gameServer for a multi-player game
 Many players
 Access (& update) shared world state

 Scan multiple objects
 Update one or two objects

15-410, F'1315

Shared access to data structures

Process per player?Process per player?
 Processes share objects only via system calls
 Hard to make game objects = operating system objects

Process per game object?Process per game object?
 “Scan multiple objects, update one”
 Lots of message passing between processes
 Lots of memory wasted for lots of processes
 Slow

15-410, F'1316

Shared access to data structures

ThreadThread per player per player
 Game objects inside single memory address space
 Each thread can access & update game objects
 Shared access to OS objects (files)

Thread-switch is cheapThread-switch is cheap
 Store N registers
 Load N registers

15-410, F'1317

Responsiveness

““Cancel” button vs. decompressing large JPEGCancel” button vs. decompressing large JPEG
 Handle mouse click during 10-second process

 Map (x,y) to “cancel button” area
 Change color / animate shadow / squeak / ...
 Verify that button-release happens in button area of screen

 ...without JPEG decompressor understanding clicks
 Actually stopping the decompressor is a separate issue

 Threads allow the user to register intent while it's running

15-410, F'1318

Multiprocessor speedup

More CPUs can't help a single-threaded process!More CPUs can't help a single-threaded process!

PhotoShop color dither operationPhotoShop color dither operation
 Divide image into regions
 One dither thread per CPU
 Can (sometimes) get linear speedup

15-410, F'1319

Kinds of threads

User-space (N:1)User-space (N:1)

Kernel threads (1:1)Kernel threads (1:1)

Many-to-many (M :N)Many-to-many (M :N)

15-410, F'1320

User-space threads (N:1)

Internal threadingInternal threading
 Thread library adds

threads to a process
 Thread switch “just

swaps registers”
 Small piece of asm code
 Maybe called yield()

Code
Data
Heap

Stack
Stack Registers
Stack

15-410, F'1321

User-space threads (N:1)

+ No change to operating system+ No change to operating system

- Any system call probably blocks all “threads”- Any system call probably blocks all “threads”
 “The process” makes a system call
 Kernel blocks “the process”
 (special non-blocking system calls can help)

- “Cooperative scheduling” awkward/insufficient- “Cooperative scheduling” awkward/insufficient
 Must manually insert many calls to yield()

- Cannot go faster on multiprocessor machines- Cannot go faster on multiprocessor machines

15-410, F'1322

Pure kernel threads (1:1)

OS-supported threadingOS-supported threading
 OS knows

thread/process
ownership

 Memory regions shared
& reference-counted

Code
Data
Heap

Stack Registers
Stack Registers
Stack Registers

15-410, F'1323

Pure kernel threads (1:1)

““Every thread is sacred”Every thread is sacred”
 Kernel-managed register set
 Kernel stack for when the thread is running kernel code
 “Real” (timer-triggered) scheduling

FeaturesFeatures
+ Program runs faster on a multiprocessor

+ CPU-hog threads don't get all the CPU time

- User-space libraries must be rewritten to be “thread safe”

- Requires more kernel memory
 1 PCB ⇒ 1 TCB + N tCB's,

 1 k-stack ⇒ N k-stacks

15-410, F'1324

Many-to-many (M:N)

Middle groundMiddle ground
 OS provides kernel

threads
 M user threads share N

kernel threads

Code
Data
Heap

Stack
Stack Registers
Stack Registers

15-410, F'1325

Many-to-many (M:N)

Sharing patternsSharing patterns
 Dedicated

 User thread 12 owns kernel thread 1

 Shared
 1 kernel thread per hardware CPU
 Each kernel thread executes next runnable user thread

 Many variations, see text

FeaturesFeatures
 Great when all the schedulers work together as you

expected!

15-410, F'1326

(Against) Thread Cancellation

Thread cancellationThread cancellation
 We don't want the result of that computation

 (“Cancel button”)

 Two kinds – “asynchronous”, “deferred”

Asynchronous (immediate) cancellationAsynchronous (immediate) cancellation
 Stop execution now

 Run 0 more instructions (at least, in user space)
 Free stack, registers
 Poof!

 Hard to garbage-collect resources (open files, ...)
 Difficult to maintain data-structure consistency!

15-410, F'1327

(Against) Thread Cancellation

Deferred ("pretty please") cancellationDeferred ("pretty please") cancellation
 Write down “Dear Thread #314, Please go away.”
 Threads must check for cancellation
 Or define safe cancellation points

 “Any time I call close() it's ok to zap me”

The only safe wayThe only safe way
 Unless your threads are running very unusual code!

15-410, F'1328

Race conditions

What you thinkWhat you think

ticket = next_ticket++; /* 0 ⇒ 1 */

What really happens (in general)What really happens (in general)
ticket = temp = next_ticket; /* 0 */
++temp; /* 1, but not visible */
next_ticket = temp; /* 1 is visible */

15-410, F'1329

Murphy' s Law (of threading)

The world may The world may arbitrarily interleavearbitrarily interleave execution execution
 Multiprocessor

 N threads executing instructions at the same time
 Of course effects are interleaved!

 Uniprocessor
 Only one thread running at a time...
 But N threads runnable, timer counting down toward zero...

The world will choose the The world will choose the most painfulmost painful interleaving interleaving
 “Once chance in a million” happens every minute

15-410, F'1330

Race Condition – Your Hope

T0 T1
tkt = tmp = n_tkt; 0

++tmp; 1
n_tkt = tmp; 1

tkt = tmp = n_tkt; 1
++tmp; 2

n_tkt = tmp; 2

T0 has ticket 0, T1 has ticket 1.
next_tkt has value 2. Your boss is
happy.

15-410, F'1331

Race Condition – Your Bad Luck

T0 T1
tkt = tmp = n_tkt; 0

tkt = tmp = n_tkt; 0
++tmp; 1

++tmp; 1
n_tkt = tmp; 1

n_tkt = tmp; 1

T0 has ticket 0, T1 has ticket 0.
next_tkt has value 1. Your boss is
not entirely happy.

15-410, F'1332

What happened?

Each thread did “something reasonable”Each thread did “something reasonable”
 ...assuming no other thread were touching those objects
 ...that is, assuming “mutual exclusion”

The world is cruelThe world is cruel
 Any possible scheduling mix will happen sometime
 The one you fear will happen...
 The one you didn't think of will happen...

15-410, F'1333

The #! shell-script hack

What's a “shell script”?What's a “shell script”?
 A file with a bunch of (shell-specific) shell commands

 #!/bin/sh
 echo “My hovercraft is full of eels.”
 sleep 10

 exit 0
 Or: a security race-condition just waiting to happen...

15-410, F'1334

The #! shell-script hack

What's "#!"?What's "#!"?
 A venerable hack

You sayYou say
 execl("/foo/script", "script", "arg1", 0);

/foo/script “executable file” begins.../foo/script “executable file” begins...
 #!/bin/sh

The kernel rewrites your system call...The kernel rewrites your system call...
 execl("/bin/sh" "/foo/script" "arg1" , 0);

The shell doesThe shell does
 open("/foo/script", O_RDONLY, 0);

15-410, F'1335

The setuid invention

U.S. Patent #4,135,240U.S. Patent #4,135,240
 Dennis M. Ritchie
 January 16, 1979

The conceptThe concept
 A program with stored privileges
 When executed, runs with two identities

 invoker's identity
 program owner's identity

 Can switch identities at will
 Open some files as invoker
 Open other files as program-owner

15-410, F'1336

Setuid example - printing a file

GoalsGoals
 Every user can queue files
 Users cannot delete other users' files

SolutionSolution
 Queue directory owned by user printer
 Setuid queue-file program

 Create queue file as user printer
 Copy joe's data as user joe

 Also, setuid remove-file program
 Allows removal only of files you queued

 User printer mediates user joe's queue access

15-410, F'1337

Race condition example

Process 0 Process 1
ln -s /bin/lpr /tmp/lpr

run /tmp/lpr
[setuid to user “printer”]
start “/bin/sh /tmp/lpr...”

rm /tmp/lpr
ln -s /my/exploit /tmp/lpr

script = open(“/tmp/lpr”);
execute /my/exploit

15-410, F'1338

What happened?

IntentionIntention
 Assign privileges to program contents

What happened?What happened?
 First, name was mapped to privileges

 (name ⇒ file, file ⇒ privileges)

 Next, program name was re-bound to a different file
 Then, name was mapped to contents

 (name ⇒ different file, different file ⇒ different contents)

How would you fix this?How would you fix this?

15-410, F'1339

How to solve race conditions?

Carefully analyze operation sequencesCarefully analyze operation sequences

Find subsequences which must be Find subsequences which must be uninterrupteduninterrupted
 “Critical section”

Use a Use a synchronization mechanismsynchronization mechanism
 Next time!

15-410, F'1340

Summary

Thread: What, whyThread: What, why

Thread flavors (ratios)Thread flavors (ratios)

Race conditionsRace conditions
 Make sure you really understand this

15-410, F'1341

Further Reading

Setuid DemystifiedSetuid Demystified
 Hao Chen, David Wagner, Drew Dean
 http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf
 “Abandon hope all ye who enter here”

The “cancel button problem”The “cancel button problem”
 “Attentiveness: Reactivity at Scale”

 Gregory S. Hartman
 CMU-ISR-10-111.pdf

15-410, F'1342

Synchronization

Partner sign-up!Partner sign-up!
 Approximately 6 students un-partnered
 5 groups have one-way sign-up (both ways, please)
 I am spamming the un-signed... let's wrap this up?

Project 1Project 1
 By end of Wednesday...

 Console (output) should be “doing something”, “not far”
 Should have “some progress” for kbd, timer

» Should really have at least “solid design”

» Better to have handled one interrupt once

Write good codeWrite good code
 Console driver will be used (and extended) in P3

