What You Need to Know
for Project One

Dave Eckhardit
Jin Sik Lee, Alex Lam

Joshua Wise
Joey Echeverria
Steve Muckle

Synchronization

* Final-exam date???
We don't choose it — the Registrar does
It's not decided yet — the Registrar decides when

* Mid-term exam?
It will be an evening exam

* Travel vs. mid-term exam and other events

Course web site has a schedule
Fairly-accurate predictor
It is available before companies ask you to travel

So please check before making travel plans

Carnegie Mellon University

2

Synchronization

* Please read the syllabus
Some of your questions are answered there :-)
We would rather teach than tear our hair out

* Also, please read the Project 1 handout
Please don't post about “Why did my screen turn
purple?”

* Partner registration -- please do if you can!
Status: ~36 students registered (thanks!)
Roughly half of registrations are 1-way (ahem!!)
The annoying e-mail will start soon!

Carnegie Mellon University

Overview

* Project 1 motivation
* Mundane details (x86/IA-32 version)

PICs, hardware interrupts, software interrupts and
exceptions, the IDT, privilege levels, segmentation

* Writing a device driver
* Installing and using Simics
* Project 1 pieces

Carnegie Mellon University

Project 1 Motivation

* Project 1 implements a game that runs directly
on x86 hardware (no OS)

* What are our hopes for Project 1?
introduction to kernel programming
a better understanding of the x86 arch

hands-on experience with hardware interrupts and
device drivers

get acquainted with the simulator (Simics) and
development tools

Carnegie Mellon University

Why do you care? 13

* You’ll need this for Project 3
* Lots of programs run on bare hardware

Copyright 2008 HI-TECH Software

Carnegie Mellon University

Mundane Details in x86

* Kernels work closely with hardware
* This means you need to know about hardware

* Some knowledge (registers, stack
conventions) is assumed from 15-213

* You will learn more x86 details as the
semester goes on

* Use the Intel PDF files as reference
(http://www.cs.cmu.edu/~410/projects.nhtmil)

Carnegie Mellon University

Mundane Details in x86
Privilege Levels

* Processor has 4
“privilege levels” (PLs)

* Zero most-privileged,
three least-privileged |

Protection Rings

* Processor executes at System

one of the four PLs at Operating System
any given time

* PLs protect privileged
data, cause general
protection faults

Applications

Carnegie Mellon University

-
Level O

Level 1

Level 2
Level 3

Mundane Details in x86:
Privilege Levels

Protection Rings

* Nearly unused in Project 1
* For projects 2 through 4

PLO is “kernel” Operaing Sysern A\

PL3 is “user”

Interrupts & exceptions usually transfer from 3to 0
Sometimes: from 0to O

Running user code means getting from 0 to 3

Carnegie Mellon University

Memory Segmentation

* There are different “kinds” of memory

* Hardware “kinds”
Read-only memory (for booting)
Video memory (painted onto screen)

* Software “kinds”
Read-only memory (typically, program code)
Stack (grows down), heap (grows up)

Carnegie Mellon University

10

Memory Segmentation

* Memory segment is a range of “the same kind”

* Hardware “kind”

Mark video memory as “don't buffer writes”
* Software “kind”

Mark all code pages read-only
* Fancy software

Process uses many separate segments

Windows: each DLL is multiple segments
(Well, Win16... and Win32... but not Win64...)

Carnegie Mellon University

11

Memory Segmentation

* x86 hardware /loves segments

* Mandatory segments
Stack
Code
Data

* Segments interact with privilege levels
Kernel stack / user stack
Kernel code / user code

Carnegie Mellon University

12

x86 Segmentation Road Map

* Segment = range of “same kind of memory”
* Segment register = %CS, %SS, %DS, ... %GS

* Segment selector = contents of a segment
register

* Which segment table and index do we mean?

* What access privilege do we have to the segment?
* Segment descriptor = definition of segment

* Which memory range?

* What are its properties?

Carnegie Mellon University

13

Memory Segmentation

* When fetching an instruction, the processor
asks for an address that looks like this: %CS:
%EIP

* So, if %EIP is Oxface then %CS:%EIP is the
64206th byte of the “code segment”.

Carnegie Mellon University

14

Mundane Details Iin x86: 4
Segmentation

* When fetching an instruction, the processor
asks for an address that looks like this: %CS:
%EIP

* The CPU looks at the segment selector in the
%CS segment register

* A segment selector looks like this:

15 4 21 0
Index T RPL

Table Indicator *
0= GOT
1=L0OT

Requested Privilege Level (RPL)

Carnegie Mellon University

15

Mundane Details in x86:
Segmentation

* Segment selector has a segment number, table
selector, and requested privilege level (RPL)

* The table-select flag selects a descriptor table
global descriptor table or local descriptor table

* Segment number indexes into that descriptor
table

15-410 uses only global descriptor table (whew!)
* Descriptor tables set up by operating system
15-410 support code builds GDT for you (whew!)

* You will still need to understand this, though...

Carnegie Mellon University 1 6

Mundane Detalls in x86:

Segmentation

Segment selector has a segment number, table
selector, and requested privilege level (RPL)

Table selector (done)
Segment number/index (done)
RPL generally means “what access do | have?”

Magic special case: RPL in %CS

* Defines current processor privilege level
* Think: “user mode” vs. “kernel mode”

* Remember this for Project 3!!!

Carnegie Mellon University

17

Mundane Details Iin x86:
Segment Descriptors

* Segment = area of memory with particular
access/usage constraints

* Base, size, “stuff”

* Logically, base and size are two 32-bit
numbers, “stuff” is flag/control bits

Carnegie Mellon University

18

Mundane Details Iin x86:
Segment Descriptors

* Segment = area of memory with particular

access/usage constraints
* Base, size, “stuff”

* Layout:
31 24 23 22212019 1615 14 1312 11 B 7
ol |a] Seq 0
Base 31:24 Glrfavy Limt [Pl p |5] Type Basa 2316
Bl (L] 1916 L
31 1615
Base Address 15:00 Sagment Limit 15:00

Carnegie Mellon university

19

Mundane Details in x86:
Segmentation

* Consider %CS segment register's segment
selector's segment descriptor
Assume base = 0xfeed0000
Assume limit > 64206

* Assume %EIP contains Oxface
Then %CS:%EIP means “linear virtual address”
Oxfeedface (Oxfeed0000 + 0x0000face)
* “Linear virtual address” fed to virtual memory
hardware, if it's turned on (Project 3, not
Project 1)

Carnegie Mellon University

20

Implied Segment Registers

* Programmer doesn't usually specify segment

* Usually implied by “kind of memory access”

* CS is the segment register for fetching code
All instruction fetches are from %CS:%EIP

* SSis the segment register for the stack segment
PUSH, POP instructions use %SS:%ESP

* DS is the default segment register for data access
MOVL (%EAX),%EBX fetches from %DS:%EAX
But ES, FS, and GS can be specified instead

Carnegie Mellon University

21

Mundane Details in x86:
Segmentation

* Segments need not be fully backed by

physical memory, and can overlap
* Segments defined for 15-410:

OXFFFFFFFF

User Code

0x00000000

User Data

Carnegie Mellon University

22

Mundane Details in x86:
Segmentation

* Why so many?
* You can'’t specify a segment that is readable,
writable and executable.
Need one for readable/executable code
Another for readable/writable data

* Need user and kernel segments in Project 3
for protection

* (Code, Data) X (User, Kernel) = 4

Carnegie Mellon University

23

Mundane Details in x86: i
Segmentation H:

User Code User Data

0x00000000

Carnegie Mellon University

24

Mundane Details Iin x86:
Segmentation

* Don’t need to be concerned with every detalil
of segments in this class

* For more information you can read the Intel
docs

* Or our documentation at:
www.cs.cmu.edu/~410/doc/segments/segments.html

Carnegie Mellon University

25

http://www.cs.cmu.edu/~410/doc/segments/segments.html

Execution Types

* From the processor's perspective, three kinds
of instruction execution
Regular work — execute this one, then the next

Branch — execute this one, then somewhere else
2

Carnegie Mellon University

26

Execution Types - Surprises

* From the processor's perspective, three kinds
of instruction execution
Regular work — execute this one, then the next
Branch — execute this one, then somewhere else

“Surprise” — suddenly we must run a different body
of code!

* Surprises
Exception/fault — this instruction can't be executed

Trap — voluntary transfer to different code

Interrupt — involuntary, unpredictable transfer to

d iffe re nt COd e Carnegie Mellon University 27

Surprises

* Exception: a particular instruction broke
* SIGSEGYV, page fault, zero divide, illegal instruction
* We may fix the conditions and re-run the instruction
* We may Kill the program

* Trap: a particular instruction asks for help
* System call: “please invoke the kernel to ...”
* We later resume at the instruction after the trap

* Interrupt: an I/0O device needs attention
* A random instruction is deferred while we run driver
* We later resume the deferred instruction

Carnegie Mellon University

28

Mundane Details in x86: Faults

* Sometimes code does stupid things
int gorgonzola = 128/0;
char* idiot_ptr = NULL; *idiot_ptr = 0,
Executing bytes which don't encode an instruction
* Exceptions cause a handler routine to be run
Record information about which instruction broke
Record information about why it broke
Locate “exception handler”
Exception handler decides: fix/kill/crash

Carnegie Mellon University

29

Mundane Details Iin x86:
“Software Interrupts”

* A device gets the kernel’s attention by raising
a (hardware) interrupt

* User processes get the kernel’s attention by
raising a “software interrupt”

Which is not an interrupt even if Intel calls it one!

* x86 instruction INT n
(more info on page 346 of intel-isr.pdf)

* Invokes handler routine: system call

Carnegie Mellon University

30

Mundane Details in x86:
Interrupts and the PIC

* Devices raise interrupts through the
Programmable Interrupt Controller (PIC)

* The PIC serializes interrupts, delivers them
* There are actually two daisy-chained PICs

PIC1l — PIC?2

ValnN

Carnegie Mellon University

Mundane Details Iin x86:
Interrupts and the PIC

To Processor

—rrocessr TR
0 [Timer PIC 2
1 |Keyboard ‘ 0 |Real Time Clock
2 |Second PIC 1 |General /O
3 |COM2 2 |General 11O
4 |ICOM1 3 |General 1/0
5 |LPT2 4 |General /O
6 |Floppy 5 |Coprocessor
7 |LPT1 6 |IDE Bus
7 |IDE Bus

Carnegie Mellon University

32

Typical Interrupt Handshake 1

Processor Device
| am feeling “full”. Assert

interrupt. Don’t de-assert
/ interrupt until processor
Interrupt dismisses this one.

Asserted

time

Carnegie Mellon University

33

Typical Interrupt Handshake 1

Processor Device
| am feeling “full”. Assert

interrupt. Don’t de-assert
Oh my! / interrupt until processor
Interrupt dismisses this one.

Invoke handler.
Asserted

time

Carnegie Mellon University

34

Typical Interrupt Handshake 1

Processor Device
| am feeling “full”. Assert

interrupt. Don’t de-assert
Oh my! / interrupt until processor
Interrupt dismisses this one.

Invoke handler.
Asserted

W Send data, feel less “full”.
Process or A/W

queue data.

time Request data.

Carnegie Mellon University

35

Typical Interrupt Handshake

Processor Device
| am feeling “full”. Assert

interrupt. Don’t de-assert
Oh my! / interrupt until processor
Interrupt dismisses this one.

Invoke handler.
Asserted

W Send data, feel less “full”.
Process or A/W

queue data.

fime Request data.

Dismiss N
interrupt Stop asserting interrupt.
' “Dismiss” signal Ready to interrupt again.

Carnegie Mellon University

36

Enabling / Disabling Interrupts

* PIC automatically defers new interrupts from a
device until old one dismissed by processor.

* We also provide disable_interrupts(),
which “disables” interrupts from ALL devices.
Think of this as deferring interrupts. They are
still out there, waiting to happen.

* We provide enable_interrupts(), which
re-enables interrupts.

* Finer-grained control is also possible.

Carnegie Mellon University

37

Interrupt Descriptor Table — IDT

* Processor needs info on which handler to run
when

* Processor reads appropriate IDT entry
depending on the interrupt, exception or INT n
instruction

* Logically, an IDT entry contains a function
pointer and some flags

Carnegie Mellon University

38

Interrupt Descriptor Table — IDT

* Processor needs info on which handler to run when

* Processor reads appropriate IDT entry depending
on the interrupt, exception or INT n instruction

* Anentryinthe IDT looks like this:

Trap Gate
21 1615 14 13 12 a7 5 4 0
0
Offset 31..16 Fl P loD111]0 0 0 4
L
31 16 15 0
Segment Selector Offset 15..0 [

Carnegie Mellon University

39

Interrupt Descriptor Table — IDT

* The first 32 entries in the IDT correspond to processor
exceptions. 31-255 correspond to hardware/software
interrupts

* Some interesting entries:

IDT Entry nterrupt

0 Divide by zero

14 Page fault

32 Keyboard interrupt

* More information in section 5.12 of intel-sys.pdf.

* Note: One “IDT” table is used for faults, traps, and
interrupts 40

Classifying Surprises

* Asynchronous or synchronous?

Asynchronous — happens at a random time
Can be deferred (“blocked”) until a convenient time

Synchronous — a particular instruction is to blame

Cannot be deferred — happen when instruction
happens

* What happens afterward?
Retry the surprising instruction (exception)
Kill program (exception)
Run the next instruction (trap, interrupt)

Carnegie Mellon University

41

Mundane Details in x86:
Communicating with Devices

* |/O Ports

* Use instructions like 1nb(port),
outb(port, data)

° Are not memory!

* Memory-Mapped I/0
* Magic areas of memory tied to devices
* PC video hardware uses both

* Cursor is controlled by I/O ports
* Characters are painted from memory

Carnegie Mellon University

42

x86 Device Perversity

* Influence of ancient history
IA-32 is fundamentally an 8-bit processor!
Primeval I/0O devices had 8-bit ports
* I/O devices have multiple “reqgisters”
Timer: waveform type, counter value
Screen: resolution, color depth, cursor position

* You must get the right value in the right device
register

Carnegie Mellon University

43

x86 Device Perversity

* Value/bus mismatch
Counter value, cursor position are 16 bits
Primeval I/O devices sfill have 8-bit ports

* Typical control flow
“I am about to tell you half of register 12”
wg o
“I am about to tell you the other half of register 12”
“0”

Carnegie Mellon University

44

x86 Device Perversity

* Sample interaction
outb(command_port, SELECT_R12_LOWER);
outb(data_port, 32);
outb(command_port, SELECT_R12_UPPER);
outb(data_port, 0);

* This is not intuitive (for software people).
Why can't we just “*R12 = Ox00000032”7?

* But you can't get anywhere on P1 without
understanding it.

Carnegie Mellon University

45

Writing a Device Driver

* Traditionally consist of two separate halves
Named “top” and “bottom” halves
BSD and Linux use these names “differently”

* One half is interrupt driven, executes quickly,
queues work

* The other half processes queued work at a
more convenient time

Carnegie Mellon University

46

Writing a Device Driver

* For this project, your keyboard driver will likely
have a top and bottom half
* Bottom half

Responds to keyboard interrupts and queues scan
codes

* Top half

In readchar(), reads from the queue and processes
scan codes into characters

Carnegie Mellon University

47

Installing and Using Simics

* Simics is an instruction set simulator
* Makes testing kernels much easier
* Project 1 Makefile builds floppy-disk images

* Simics boots and runs them
Launch simics4 in your build directory

* Your 15-410 AFS space has p1/, scratch/

* If you work in scratch/, we can read your files,
and answering questions can be much faster.

Carnegie Mellon University

48

Installing and Using Simics:
Running on Personal PC

* Not a “supported configuration”
Campus IP addresses can use campus license

Andrew's VPN should work for off-campus users
(details in previous lecture)

* Download simics-linux.tar.gz
* Install mtools package
* Tweak Makefile

Carnegie Mellon University

49

Installing and Using Simics:
Overview of usage

* Run simulation with r, stop with AC

* Magic instruction

xchg %bx, %bx (wrapper in interrupts.h)
This may change -- use the macros!

* Memory access breakpoints
break 0x2000 —x OR break (sym init_timer)
* Symbolic debugging
psym foo OR print (sym foo)
* See our local Simics hints! (on Project page)

Carnegie Mellon University

50

Simics vs. gdb

* Similar jobs: symbolic debugging
* Random differences

Details of commands and syntax
* Notable differences

Simics knows everything about PC hardware — all
magic registers, TLB contents, interrupt masks, etc.

Simics is scriptable in Python

Carnegie Mellon University

51

Project 1 Pieces

* You will build

A device-driver library
“console” (screen) driver
keyboard driver
timer driver

A simple game application using your driver library
* We will provide

underlying setup/utility code

A simple device-driver test program

Carnegie Mellon University

52

Project 1 Pieces -

Simics Console: con0 - Mouse Input Disabled

This is the battle phase

Use the (wasd) keys to
move the crosshair

press (space) to fire!?

'X' indicates a hit
» »
0" indiciates a miss

Carnegie Mellon University

53

Project 1 Pieces HE

—

bootable floppy disk image

Carnegie Mellon University

54

Summary

* Project 1 runs on bare hardware
* Not a machine-invisible language like ML or Java
* Not a machine-portable language like C
* Budget time for understanding this environment

* Project 1 runs on simulated bare hardware
* You probably need more than printf() for debugging

* Simics is not (exactly) gdb
* |nvest time to learn more than bare minimum

Carnegie Mellon University

55

Summary

* Project 1 runs on bare PC hardware
As hardware goes, it's pretty irrational
Almost nothing works “how you would expect”
Those pesky bit-field diagrams do matter
Getting started is tough, so please don't delay.

* This isn't throwaway code
We will read it

You will use it for Project 3
So spend extra time to make it really great code!

Carnegie Mellon University

56

