
15-410, F’131

Hardware Overview
Sep. 4, 2013

Dave EckhardtDave Eckhardt

Todd MowryTodd Mowry

L04_Hardware

15-410
“Computers make very fast, very accurate mistakes.”

--Brandon Long

15-410, F’132

Synchronization

Partner signupsPartner signups
 ~12 group signups so far – thanks!
 Please sign up as soon as you decide!

 This helps other students
 Both partners please sign up!

 This helps course staff detect “love triangles”

15-410, F’133

Synchronization

Today's classToday's class
 Not exactly OSC Chapter 2 or 13
 Not exactly OS:P+P Chapter 2, Section 3.0/3.5

Project 0Project 0
 Due Wednesday at midnight
 Consider not using a late day

 Could be a valuable commodity later!
 Remember, this is a warm-up project

 Reliance on these skills will increase rapidly

UpcomingUpcoming
 Lecture on “The Process”
 Project 1

15-410, F’134

Synchronization

Personal Simics licensesPersonal Simics licenses
 Simics machine-simulator software is licensed
 We have enough “seats” for the class

 Should work on most CMU-network machines
 Will not work on most non-CMU-network

machines
 CMU operates a VPN server for off-campus users

» http://www.cmu.edu/computing/network/vpn

» There is an open-source alternative (OpenConnect)

• It used to not work with the campus server

• Recently rumor has it that it does

15-410, F’135

Synchronization

Simics on Windows?Simics on Windows?
 Simics simulator itself is available for Windows
 15-410 build/debug infrastructure is not

 Can be hacked up, issues may arise
» Version skew, partner, ...

OptionsOptions
 Dual-boot Linux/Windows, run Linux in VMware
 Usability via X depends on network latency

 May be too slow – though we are experimenting
 Port to cygwin (may be non-trivial)
 There are some cluster machines...

 WeH 5207, GHC 3000, GHC 5201/5205

15-410, F’136

Outline

Computer hardwareComputer hardware

CPU StateCPU State

Fairy tales about system callsFairy tales about system calls

CPU context switch (intro)CPU context switch (intro)

Interrupt handlersInterrupt handlers

Race conditionsRace conditions

Interrupt maskingInterrupt masking

Sample hardware device – countdown timerSample hardware device – countdown timer

15-410, F’137

Inside The Box - Historical/Logical

CPU

Memory

Graphics

Ethernet

IDE

Floppy

USB

15-410, F’138

Inside The Box - 1997-2004

CPU

Memory AGP Graphics

IDE
Floppy
USB

North Bridge

South Bridge

P
C
I

Ethernet

SCSI

15-410, F’139

Inside The Box - 2004-

CPU

Memory PCIe Graphics

SATA
Floppy
USB

North Bridge

South Bridge

P
C
I
e

Ethernet

SCSI

P
C
I

15-410, F’1310

CPU State

User registers (on Planet IA32)User registers (on Planet IA32)
 General purpose - %eax, %ebx, %ecx, %edx
 Stack Pointer - %esp
 Frame Pointer - %ebp
 Mysterious String Registers - %esi, %edi

15-410, F’1311

CPU State

Non-userNon-user registers, a.k.a.... registers, a.k.a....

Processor status register(s)Processor status register(s)
 Currently running: user code / kernel code?
 Interrupts on / off
 Virtual memory on / off
 Memory model

 small, medium, large, purple, dinosaur

15-410, F’1312

CPU State

Floating point number registersFloating point number registers
 Logically part of “User registers”
 Sometimes another “special” set of registers

 Some machines don't have floating point
 Some processes don't use floating point

15-410, F’1313

Story time!

Time for some fairy talesTime for some fairy tales
 The getpid() story (shortest legal fairy tale)
 The read() story (toddler version)
 The read() story (grade-school version)

15-410, F’1314

The Story of getpid()

User process is computingUser process is computing
 User process calls getpid() library routine
 Library routine executes TRAP $314159

 In Intel-land, TRAP is called “INT” (because it
isn't one)

» REMEMBER: “INT” is not an interrupt

The world changesThe world changes
 Some registers dumped into memory somewhere
 Some registers loaded from memory somewhere

The processor has The processor has entered kernel modeentered kernel mode

15-410, F’1315

User Mode

Operating
System

Process 1

Process 2
CPU

15-410, F’1316

Entering Kernel Mode

Operating
System

Process 1

Process 2
CPU

save

15-410, F’1317

Entering Kernel Mode

Operating
System

Process 1

Process 2
CPU

Ethernet
SATA

Floppy
USB

15-410, F’1318

The Kernel Runtime Environment

Language runtimes differLanguage runtimes differ
 ML: may have no stack (“nothing but heap”)
 C: stack-based

Processor is more-or-less agnosticProcessor is more-or-less agnostic
 Some assume/mandate a stack

““Trap handler” builds kernel runtime environmentTrap handler” builds kernel runtime environment
 Depending on processor

 Switches to correct stack
 Saves registers
 Turns on virtual memory
 Flushes caches

15-410, F’1319

The Story of getpid()

Process runs in kernel modeProcess runs in kernel mode
 running->u_reg[R_EAX] = running->u_pid;

““Return from interrupt”Return from interrupt”
 Processor state restored to user mode

 (modulo %eax)

User process returns to computingUser process returns to computing
 Library routine returns %eax as value of getpid()

15-410, F’1320

Returning to User Mode

Operating
System

Process 1

Process 2
CPU

restore

15-410, F’1321

The Story of getpid()

What's the getpid() system call?What's the getpid() system call?
 C function you call to get your process ID
 “Single instruction” (INT) which modifies %eax
 Privileged code which can access OS internal state

15-410, F’1322

A Story About read()

User process is computingUser process is computing
count = read(7, buf, sizeof (buf));

User process “stops running”User process “stops running”

Operating system issues disk readOperating system issues disk read

Time passesTime passes

Operating system copies data to user bufferOperating system copies data to user buffer

User process “starts running again”User process “starts running again”

15-410, F’1323

Another Story About read()

P1: read()P1: read()
 Trap to kernel mode

Kernel: tell disk: “read sector 2781828”Kernel: tell disk: “read sector 2781828”

Kernel: switch to running P2Kernel: switch to running P2
 Return to user mode - but to P2, not P1!
 P1 is “blocked in a system call”

 P1's %eip is somewhere in the kernel

» (details later)
 Marked “unable to execute more instructions”

P2: compute 1/3 of Mandelbrot setP2: compute 1/3 of Mandelbrot set

15-410, F’1324

Another Story About read()

Disk: done!Disk: done!
 Asserts “interrupt request” signal
 CPU stops running P2's instructions
 Interrupts to kernel mode
 Runs “disk interrupt handler” code

Kernel: switch to P1Kernel: switch to P1
 Return from interrupt - but to P1, not P2!
 P2 is able to execute instructions, but not doing so

 P2 is not running
 But it is not “blocked”
 It is “runnable”

15-410, F’1325

Interrupt Vector Table

How should CPU handle How should CPU handle this particularthis particular interrupt? interrupt?

 Disk interrupt ⇒ invoke disk driver

 Mouse interrupt ⇒ invoke mouse driver

Need to knowNeed to know
 Where to dump registers

 Often: property of current process, not of
interrupt

 New register values to load into CPU
 Key: new program counter, new status register

» These define the new execution environment

15-410, F’1326

Interrupt Dispatch

Table lookupTable lookup
 Interrupt controller says: this is interrupt source #3
 CPU fetches table entry #3

 Table base-pointer programmed in OS startup
 Table-entry size defined by hardware

Save old processor stateSave old processor state

Modify CPU state according to table entryModify CPU state according to table entry

Start running interrupt handlerStart running interrupt handler

15-410, F’1327

Interrupt Return

““Return from interrupt” operationReturn from interrupt” operation
 Load saved processor state back into registers
 Restoring program counter reactivates “old” code
 Hardware instruction typically restores some state
 Kernel code must restore the remainder

15-410, F’1328

Example: x86/IA32

CPU saves old processor stateCPU saves old processor state
 Stored on “kernel stack” (picture follows)

CPU modifies state according to table entryCPU modifies state according to table entry
 Loads new privilege information, program counter

Interrupt handler beginsInterrupt handler begins
 Uses kernel stack for its own purposes

Interrupt handler completesInterrupt handler completes
 Empties stack back to original state
 Invokes “interrupt return” (IRET) instruction

 Registers loaded from kernel stack
 Mode switched from “kernel” to “user”

15-410, F’1329

IA32 Single-Task Mode Example

Picture: Interrupt/Exception Picture: Interrupt/Exception while in kernel modewhile in kernel mode (Project 1) (Project 1)

Hardware pushes registers on current stack, NO STACK CHANGEHardware pushes registers on current stack, NO STACK CHANGE
 EFLAGS (processor state)

 CS/EIP (return address)

 Error code (certain interrupts/faults, not others: see intel-sys.pdf)

 IRET restores state from EIP, CS, EFLAGS

From intel-sys.pdf
 (please consult!)

15-410, F’1330

Race Conditions

1. Two concurrent activities1. Two concurrent activities
 Computer program, disk drive

2. Various execution sequences produce various 2. Various execution sequences produce various
“answers”“answers”
 Disk interrupt before or after function call?

3. Execution sequence is not controlled3. Execution sequence is not controlled
 So either outcome is possible “randomly”

⇒ ⇒ System produces random “answers”System produces random “answers”

 One answer or another “wins the race”

15-410, F’1331

Race Conditions – Disk Device Driver

““Top half” wants to launch disk-I/O requestsTop half” wants to launch disk-I/O requests
 If disk is idle, send it the request
 If disk is busy, queue request for later

Interrupt handler action depends on queue statusInterrupt handler action depends on queue status

 Work in queue ⇒ transmit next request to disk

 Queue empty ⇒ let disk go idle

15-410, F’1332

Race Conditions – Disk Device Driver

““Top half” wants to launch disk-I/O requestsTop half” wants to launch disk-I/O requests
 If disk is idle, send it the request
 If disk is busy, queue request for later

Interrupt handler action depends on queue statusInterrupt handler action depends on queue status

 Work in queue ⇒ transmit next request to disk

 Queue empty ⇒ let disk go idle

Various execution orders possibleVarious execution orders possible
 Disk interrupt before or after “disk is idle” test?

System produces random “answers”System produces random “answers”

 “Work in queue ⇒ transmit next request” (good)

 “Work in queue ⇒ let disk go idle” (what??)

15-410, F’1333

Race Conditions – Driver Skeleton

dev_start(request) {
 if (device_idle) {
 device_idle = 0;
 send_device(request);
 } else {
 enqueue(request);
 }
}
dev_intr() {
 ...finish up previous request...
 if (new_request = head()) {
 send_device(new_request);
 } else
 device_idle = 1;
}

15-410, F’1334

Race Conditions – Good Case

User process Interrupt handler
if (device_idle)
/* no, so... */
enqueue(request)

INTERRUPT
...finish up...
new = 0x80102044;
send_device(new);

RETURN FROM
INTERRUPT

15-410, F’1335

Race Conditions – Bad Case

User process Interrupt handler
if (device_idle)
/* no, so... */

INTERRUPT
..finish up...

new = 0;
device_idle = 1;

RETURN FROM
INTERRUPT

enqueue(request)

15-410, F’1336

What Went Wrong?

““Top half” ran its algorithmTop half” ran its algorithm
 Examine state
 Commit to action

Interrupt handler ran Interrupt handler ran itsits algorithm algorithm
 Examine state
 Commit to action

Various outcomes possibleVarious outcomes possible
 Depends on exactly when interrupt handler runs

System produces random “answers”System produces random “answers”
 Study & avoid this in your P1!

15-410, F’1337

What To Do?

Two approachesTwo approaches
 Temporarily suspend/mask/defer device

interrupt while checking and enqueueing
 Will cover further before Project 1

 Or use a lock-free data structure
 [left as an exercise for the reader]

ConsiderationsConsiderations
 Avoid blocking Avoid blocking allall interrupts interrupts

 [not a big issue for 15-410]
 Avoid blocking too longAvoid blocking too long

 Part of Project 1, Project 3 grading criteria

15-410, F’1338

Timer – Behavior

Simple behaviorSimple behavior
 Count something

 CPU cycles, bus cycles, microseconds
 When you hit a limit, signal an interrupt
 Reload counter to initial value

 Done “in background” / “in hardware”
 (Doesn't wait for software to do reload)

SummarySummary
 No “requests”, no “results”
 Steady stream of evenly-distributed interrupts

15-410, F’1339

Timer – Why?

Why interrupt a perfectly good execution?Why interrupt a perfectly good execution?

Avoid CPU hogsAvoid CPU hogs
 while (1)
 continue;

Maintain accurate time of dayMaintain accurate time of day
 Battery-backed calendar counts only seconds

(poorly)

Dual-purpose interruptDual-purpose interrupt
 Timekeeping

++ticks_since_boot;
 Avoid CPU hogs: force process switch

15-410, F’1340

Summary

Computer hardwareComputer hardware

CPU StateCPU State

Fairy tales about system callsFairy tales about system calls

CPU context switch (intro)CPU context switch (intro)

Interrupt handlersInterrupt handlers

Race conditionsRace conditions

Interrupt maskingInterrupt masking

Sample hardware device – countdown timerSample hardware device – countdown timer

