
15-410, S'081

Exam #1
Mar. 24, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L25_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, S'082

Synchronization

Checkpoint 3 – Friday, file drop (see announcement)Checkpoint 3 – Friday, file drop (see announcement)
� Suggestions

� You now know how long VM and context switch take
» Plus fork() or exec()

� There's a lot more to do
» Code, but also design (vanish()/wait()!) and debug

� We'll ask you to put together a schedule... please do.
� Reminders

� context switch � mode switch

» Identify scenarios with one and not the other
� context switch � interrupt

» Later it will be invoked in other circumstances
� If you don't see the differences, contact course st aff!

15-410, S'083

Synchronization

Google “Summer of Code”Google “Summer of Code”
� http://code.google.com/soc/
� Hack on an open-source project

� And get paid
� And quite possibly get recruited

CMU SCS “Coding in the Summer”CMU SCS “Coding in the Summer”

15-410, S'084

Synchronization

Debugging adviceDebugging advice
� Last semester as I was buying lunch I received a fo rtune

15-410, S'085

Synchronization

Debugging adviceDebugging advice
� Last semester as I was buying lunch I received a fo rtune

Image credit: Kartik Subramanian

15-410, S'086

A Word on the Final Exam

DisclaimerDisclaimer
� Past performance is not a guarantee of future resul ts

The course will changeThe course will change
� Up to now: “basics” - What you need for Project 3
� Coming: advanced topics

� Design issues
� Things you won't experience via implementation

Examination will change to matchExamination will change to match
� More design questions
� Some things you won't have implemented (text useful !!)
� Still 3 hours, but more stuff (~100 points, ~7 ques tions)

15-410, S'087

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, S'088

Q1 – Short Answer

ProgressProgress
� Pretty straightforward
� For critical-section algorithms: “As long as a non- zero

number of people want to enter the critical section ,
somebody will get to enter”.

� (As a general “systems” term: “the system is perfor ming
useful work”)

15-410, S'089

Q1 – Short Answer

User ModeUser Mode
� A common glitch – using “mode” without explanation

when defining what a user mode is
� Key concept: environment in which operations which

could disturb other computations are banned; enforc ed
by rules built into hardware (OUTB checks IOPL; CLI won't
let user code disable interrupts, etc.)

15-410, S'0810

Q2 – Trouble at the Warehouse

What was right about the code?What was right about the code?
� Lots of mutexes, lots of cvars
� All code accessing shared state held some mutex

What was What was notnot wrong about the code? wrong about the code?
� There was not an arbitrary underflow/overflow probl em

� Reasoning is weird but a useful thought exercise
» Because adders and subtracters use different loadin g

docks, there can be at most one of each
» Inside of that restriction, the one adder and the o ne

subtracter do lock each other out
� “Always use cond_signal(), not cond_broadcast()”

� Waking too many threads can be an issue
� But waking too few people risks waking the wrong ki nd

15-410, S'0811

Q2 – Trouble at the Warehouse

What was wrong?What was wrong?
� One logic error (involving “ready”)
� A huge synchronization error

� Wrong number of mutexes
� Mutexes doing the wrong job
� The key issue

» Everybody involved in shared state has a “examine,
then commit” pattern (aside from trivial cases: ++/ --)

» If state can change between “examine” and “commit”,
people will get lost/hung, or state changes will be
incorrect

» Solution: one mutex per collection of shared state
» Held just long enough for “examine, commit” to be

atomic
» Recall our “mutex assumptions”

15-410, S'0812

Q2 – Trouble at the Warehouse

General approachGeneral approach
� One mutex
� Multiple condition variables

� One for each reason somebody should sleep / wake
» Loading dock availability
» Availability of each kind of stock
» Availability of forklift
» Etc.

15-410, S'0813

Q3 – Dual-priority Locking

The missionThe mission
� Write a “fancy lock”

� Each thread is either high-priority or low-priority
� When lock is released, it should go to a high-prior ity thread

if any are waiting
� Objects you need

� Mutex
» You need one to protect competing accesses to state
» More than one is asking for trouble – who holds wha t

should be encoded in the state, not in a mutex, whi ch
should be held only very briefly

� Two thread counts, two cvars (note the relationship)
� Optionally one extra variable

» Logically makes sense; got most people into trouble

15-410, S'0814

Q3 – Dual-priority Locking

Frequent hazardsFrequent hazards
� Leaking memory in init

� If you got “see course staff”, please do so
� Forgetting about “the third thread”

� Considered: one unlocker, one high-priority thread which
you expect/home will run

� But another (low-priority) thread might always capt ure the
lock

� Lock state must somehow make this case visible to t he third
thread

� See lecture material for detailed “third thread” ex ample
� Too few / too many cvars

� Define the key state-change transitions, give each a cvar
� Deadlock, etc.

15-410, S'0815

Q4 – Deadlock

Question tested understanding of multiple detailsQuestion tested understanding of multiple details
� Imposing a locking order (to avoid circular wait)
� Safe sequence

Frequent hazardsFrequent hazards
� Confusing hold&wait vs. circular wait

� Almost every application involves hold&wait
� Inadequate understanding of safe sequence
� Omissions (e.g., not drawing process/resource graph)

AdviceAdvice
� Go back and understand this thoroughly
� It is one of the key non-programming concepts of th e

class

15-410, S'0816

Q5 – Stack Picture

Key elements of solutionKey elements of solution
� Enough stack frames
� Enough pieces in each stack frame
� Getting the struct in the right place
� Not putting strings in strange places

Graded fairly gentlyGraded fairly gently

15-410, S'0817

Breakdown

90% = 67.590% = 67.5 3 students 3 students

80% = 60.080% = 60.0 9 students 9 students

70% = 52.570% = 52.5 23 students (52 and up)23 students (52 and up)

60% = 45.060% = 45.0 11 students11 students

50% = 37.550% = 37.5 13 students13 students

<50%<50% 7 students 7 students

ComparisonComparison
� Scores are lower than typical

15-410, S'0818

Implications

We adjusted scores upwardWe adjusted scores upward
� Something like 3-5 points

Score below 70%?Score below 70%?
� Figure out what happened
� Probably plan to do better on the final exam

Warning...Warning...
� To pass the class you must demonstrate reasonable

proficiency on exams (project grades alone are not
sufficient)

� See syllabus

