
15-410, S'071

Exam #1
Mar. 19, 2007

Dave EckhardtDave Eckhardt

L22_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, S'072

Synchronization

Checkpoint 2 – Friday, in clusterCheckpoint 2 – Friday, in cluster
� Reminder: context switch � interrupt

� Later other things will invoke it too

Google “Summer of Code”Google “Summer of Code”
� http://code.google.com/soc/
� Hack on an open-source project

� And get paid
� And probably get recruited

CMU SCS “Coding in the Summer”CMU SCS “Coding in the Summer”

15-410, S'073

A Word on the Final Exam

DisclaimerDisclaimer
� Past performance is not a guarantee of future resul ts

The course will changeThe course will change
� Up to now: “basics” - What you need for Project 3
� Coming: advanced topics

� Design issues
� Things you won't experience via implementation

Examination will change to matchExamination will change to match
� More design questions
� Some things you won't have implemented (text useful !!)
� Still 3 hours, but more stuff (~100 points, ~7 ques tions)

15-410, S'074

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, S'075

Q1 – Short Answer

StarvationStarvation
� Key concept: repeatedly losing a resource-acquisiti on

“game” to the point of genuine, observable unfairne ss
� Definitely not: “I want Disk 3, but somebody locks it and

enters an infinite loop”
� In practice, frequently involves trying to acquire multiple

resources
� Starvation happens even when there is no deadlock
� Starvation happens even when the system makes

progress
� Starvation vs. critical-section “bounded waiting”

� Some relationship, but not two names for the same t hing

15-410, S'076

Q1 – Short Answer

Thread-safeThread-safe
� Key concept: “Can be simultaneously invoked by mult iple

threads with correct states and answers resulting”
� Mutexes (or other locks) needed when multiple threads

access shared state
� If no state is shared, thread-safety doesn't requir e locks!
� Sometimes state can be shared without locks!

15-410, S'077

Q2 – Process Model

““ Write code to probe the kernel's response to attemp ing Write code to probe the kernel's response to attemp ing
to read/write to the ____ region, which should/shou ldn't to read/write to the ____ region, which should/shou ldn't
be allowed”be allowed”

ConceptsConcepts
� What is a region?
� Which C constructs are located in which regions?

 char *s = “Hello, Sailor!”;

 char s[] = “Hello, Sailor!”;
� Which system calls {write,read} memory

� (new_pages(), remove_pages() don't!)

Tests: What are the parts? How do parts fit togeth er?Tests: What are the parts? How do parts fit togeth er?

15-410, S'078

Q3 – Test Condition Variables

The missionThe mission
� Write test code: if two threads are awaiting a cond ition,

and the condition is signaled, exactly one thread i s
awakened. Test should complete in 10 seconds.

The answer?The answer?

15-410, S'079

Q3 – Test Condition Variables

The missionThe mission
� Write test code: if two threads are awaiting a cond ition,

and the condition is signaled, exactly one thread i s
awakened. Test should complete in 10 seconds.

The answer?The answer?
� [left as an exercise for the reader]

15-410, S'0710

Q3 – Test Condition Variables

The partsThe parts
� Launch two threads (popular, ok: three)
� Measure when two threads are awaiting a condition

� (not quite as good: “convince” threads)
� (not quite as good: verify thread state looks like what your

condition variables do)
� Subtlety: the best test code doesn't wait for threa ds to stop

� Signal the condition variable
� “Allow some time” for threads to awaken!
� Measure how many threads wake up

� Detect “2 threads awaken”
� Detect “0 threads awaken”

� Make use of / comply with the 10-second requirement

15-410, S'0711

Q3 – Test Condition Variables

Key issuesKey issues
� Must hold mutex before you ask cond_wait() to unloc k it
� “Semi-locked state” is generally unwise

� Some people manipulate an int while holding a mutex
� Other people peer at the int while not holding the mutex
� The peering thread learns much less than it might s eem

» State change of the int is inherently disconnected from
other state changes of the manipulating thread

» On a machine with “modern memory”...

• The int's state change may be “from the future”!

15-410, S'0712

Q3 – Test Condition Variables

AdviceAdvice
� Turn text into checklist (“The parts” above)
� Think about measurement

� What are you trying to measure?
� How can you most simply measure each thing?

� Think about race conditions
� I want this to happen, then that
� What other event orders are possible?

15-410, S'0713

Q3 – Test Condition Variables

CC
 typedef struct nexus { ... } *nexus_p;

 void nexus_init(nexus_p np)

 {

 np ...?

 }

15-410, S'0714

Q3 – Test Condition Variables

CC
 typedef struct nexus { ... } *nexus_p;

 void nexus_init(nexus_p np)

 {

 /* pick one of these two */

 np = malloc(sizeof (struct nexus));

 np = malloc(sizeof (*np));

 }

15-410, S'0715

Q3 – Test Condition Variables

CC
 typedef struct nexus { ... } *nexus_p;

 void nexus_init(nexus_p np)

 {

 np = malloc(sizeof (*np));

 /* why is this fundamentally wrong? */

 }

15-410, S'0716

Q4 – Inscrutable Code

TestedTested
� What do the building blocks do?

� thread_fork, set_status(), vanish()
� How do they fit together? (Even when “abused”)
� What does a piece of code do?

� (especially: code written by somebody else)
� (not: What does it look like it does? What are its hopes?)

� Detect a race condition when shown thread code

Residual confusionResidual confusion
� Relationship of thread_fork to thread-stack creatio n
� Relationship of vanish() to thread-stack removal
� One hazard: “Read your partner's code”

15-410, S'0717

Q5 – Deadlock

Key issuesKey issues
� Drawing a process/resource graph

� Graded somewhat gently, but you need to clearly:
» Differentiate between actors and objects
» Differentiate between requesting and owning
» Recognize and portray deadlock

� Describing the deadlock
� Make sure you can think deadlocks through in terms of the

four necessary ingredients – each deadlock exhibits all four
� Fixing the problem

� This time the “standard solution” helps
� But there is still a “Which one is better?” design step

15-410, S'0718

Summary

90% = 72.090% = 72.0 7 students 7 students

80% = 64.080% = 64.0 23 students23 students

70% = 56.070% = 56.0 14 students14 students

60% = 48.060% = 48.0 6 students 6 students

<60%<60% 2 students 2 students

ComparisonComparison
� This is a roughly-typical mix for the mid-term

� More B's, fewer A's & C's

15-410, S'0719

Implications

Score below 70%?Score below 70%?
� Figure out what happened
� Probably plan to do better on the final exam

Warning...Warning...
� To pass the class you must demonstrate reasonable

proficiency on exams (project grades alone are not
sufficient)

� See syllabus

