
15-410, F'071

Exam #1
Oct. 17, 2007

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L20_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, F'072

Synchronization

Checkpoint 2 – Wednesday, in clusterCheckpoint 2 – Wednesday, in cluster
� Reminders

� context switch � mode switch

» Identify scenarios with one and not the other
� context switch � interrupt

» Later it will be invoked in other circumstances

Google “Summer of Code”Google “Summer of Code”
� http://code.google.com/soc/
� Hack on an open-source project

� And get paid
� And probably get recruited

CMU SCS “Coding in the Summer”CMU SCS “Coding in the Summer”

15-410, F'073

Synchronization

Debugging adviceDebugging advice
� Monday as I was buying lunch I received a fortune

15-410, F'074

Synchronization

Debugging adviceDebugging advice
� Monday as I was buying lunch I received a fortune

Image credit: Kartik Subramanian

15-410, F'075

A Word on the Final Exam

DisclaimerDisclaimer
� Past performance is not a guarantee of future resul ts

The course will changeThe course will change
� Up to now: “basics” - What you need for Project 3
� Coming: advanced topics

� Design issues
� Things you won't experience via implementation

Examination will change to matchExamination will change to match
� More design questions
� Some things you won't have implemented (text useful !!)
� Still 3 hours, but more stuff (~100 points, ~7 ques tions)

15-410, F'076

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, F'077

Q1 – Short Answer

Write pipe (also known as “write buffer”)Write pipe (also known as “write buffer”)
� Key concept: the part of a “modern” computer which

makes it “modern”
� Popular but not as relevant to this course

� The write side of a pipe
� Some kind of write buffer which isn't a write pipe

15-410, F'078

Q1 – Short Answer

Interrupt acknowledgeInterrupt acknowledge
� Best answers covered:

� What it's for
» Sending device back to start of protocol (enabling it to

assert another interrupt later)
� When it happens

» When processor has acquired the information
necessary to characterize and handle the interrupt

� How it happens
» Processor sends a command (in our world, via an OUTB)

15-410, F'079

Q2 – Monitor Implementation

Write some macros...Write some macros...
� M_DECL(), M_INIT(), etc.
� ...to support a “monitor style” of programming

Getting startedGetting started
� work_setup() needs to thr_create() a worker thread

� Nobody else can...

Locking issueLocking issue
� Sometimes we need others to enter the monitor to

progress us... condition_wait() will make that happen
� Sometimes we need others to not enter the monitor just

yet... but condition_wait() will make that happen

15-410, F'0710

Q2 – Monitor Implementation

Types and returningTypes and returning
� M_RETURN(t,v) – takes a type and a value
� There is a subtle locking problem here

� What happens when I M_RETURN(int,some_global_int)?
� M_RETURN() needs to accomplish two things

» Neither order will work
» So M_RETURN() needs to accomplish three things

• That's what the type parameter is for

ScopingScoping
� A common M_DECL() mistake would mean each program

could contain only one monitor.

15-410, F'0711

Q3 – Critical Section Algorithm

The missionThe mission
� Evaluate a proposed critical-section algorithm in t erms of

whether it provides mutual exclusion, progress, and
bounded waiting

Terminology to watch out forTerminology to watch out for
� Progress is about the system
� Bounded waiting is about a particular victim

� Violating bounded waiting means “we can't write dow n a
bound”

� It does not mean “we can show there exists a small,
bounded amount of unfairness” - strict FIFO behavio r is not
required, because it's much too hard

15-410, F'0712

Q3 – Critical Section Algorithm

Mutual exclusionMutual exclusion
� Pretty much everybody was able to show this was bro ken
� Some people lost some points for execution traces t hat

were too terse (the loop is a key part of the story)

15-410, F'0713

Q3 – Critical Section Algorithm

ProgressProgress
� No!
� The key problem is that mutual exclusion is broken
� Two racing unlockers can leave the lock in a broken state

Thread 2 Thread 1
T2 is done wanting

Decide to appoint T1

T1 is done wanting

Lock is available to all

Appoint T1

Now T1 goes on vacation to Belize...

15-410, F'0714

Q3 – Critical Section Algorithm

ProgressProgress
� Not progress violations

� One thread might crash while holding the lock
� One thread might never unlock the lock

» True, but not faults in the algorithm

Another way to show progress isn't assuredAnother way to show progress isn't assured
� set() isn't atomic

Other problemsOther problems
� Bad execution traces which can't actually happen
� Explaining what the algorithm wants to do

15-410, F'0715

Q3 – Critical Section Algorithm

Bounded waitingBounded waiting
� No!

� Gee, this algorithm isn't so hot, is it?
� Key problem: set()

15-410, F'0716

Q4 – Deadlock

Issues with the new clusterIssues with the new cluster
� Description of resources (computers, servers, proje ctor)
� Description of threads (OS, Networks)
� Deadlock? Yes/no/why?

(A) – Can OS students deadlock?(A) – Can OS students deadlock?
� Observe: this is “Dining Philosophers”!
� Observe: the projector injects a subtle yet importa nt

property...

(B) – Can Networks students deadlock?(B) – Can Networks students deadlock?
� Can explain in terms of h&w or graph cycles
� Must state name of property and show it

15-410, F'0717

Q4 – Deadlock

(C) – Can mixture of students deadlock?(C) – Can mixture of students deadlock?
� Parts of a complete solution

� Diagram of sufficient clarity
� Event trace of sufficient clarity (clear text was a ccepted)
� Explanation of why the situation, as diagrammed and traced,

is classified the way it is

15-410, F'0718

Q5 – Your Partner's Code

char *the_word(int num)

{

 char buf[8];

 switch (num % 4) {

 case 0: snprintf(buf, sizeof(buf), "zero"); break;

 case 1: snprintf(buf, sizeof(buf), "one"); break;

 case 2: snprintf(buf, sizeof(buf), "two"); break;

 case 3: snprintf(buf, sizeof(buf), "three"); break;

 }

 return (buf);

}

15-410, F'0719

Q5 – Your Partner's Code

(A) – What's wrong with this picture?(A) – What's wrong with this picture?
� The “213 answer”: returning a pointer to “automatic

storage”

Claims difficult to supportClaims difficult to support
� “Stack memory `disappears' when a function returns”

� Set to zero...
� Removed from address space...
� Will cause a segmentation fault...
� ...Unfortunately not true

� “snprintf() is not up to this job”
� “...the heap...”
� “sizeof() is evil”

15-410, F'0720

Q5 – Your Partner's Code

““ sizeof()sizeof() is evil” is evil”
� There are times when sizeof() “doesn't do what you want”

void foo(char s[1024]) {

 ... sizeof(s) ... // not 1024

}

void bar(void) {

 char *s;

 s = malloc(512);

 ... sizeof(s) ... // not 512

}

15-410, F'0721

Q5 – Your Partner's Code

““sizeof()sizeof() is evil” is evil”
� There are times when sizeof() “doesn't do what you want”
� ...but it isn't designed to be wrong all the time!

The problem isn't actually sizeof()The problem isn't actually sizeof()
� The issue is that in C some things which look like arrays

aren't
� Pointers can be used like arrays, but are pointer-s ized
� Function parameters which look like arrays are actu ally

pointers, and are pointer-sized
� Actual arrays (local or global) are actually arrays , and are

array-sized

15-410, F'0722

Q5 – Your Partner's Code

(B) What's wrong with the code – in context?(B) What's wrong with the code – in context?
� Two possible answers
� For complete credit, the less-than-obvious one is b etter

� There isn't another thread out there, but...

Things to avoidThings to avoid
� “Some other thread...” - there are no other threads
� “The kernel...” - this code is the kernel
� Generally, avoid mysterious or missing actors

15-410, F'0723

Breakdown

90% = 67.590% = 67.5 0 students 0 students

80% = 60.080% = 60.0 19 students19 students

70% = 52.570% = 52.5 25 students (52 and up)25 students (52 and up)

60% = 45.060% = 45.0 4 students 4 students

50% = 37.550% = 37.5 9 students 9 students

<50%<50% 3 students 3 students

ComparisonComparison
� Scores are lower than typical

� Even if we correct for that person who clearly
forgot to answer that one question

15-410, F'0724

Implications

Further analysis will probably suggest a mild scali ngFurther analysis will probably suggest a mild scali ng
� Maybe something like 3-5 points

Score below 70%?Score below 70%?
� Figure out what happened
� Probably plan to do better on the final exam

Warning...Warning...
� To pass the class you must demonstrate reasonable

proficiency on exams (project grades alone are not
sufficient)

� See syllabus

