
Project 2: User Level Thread Library
15-410 Operating Systems

September 17, 2008

1 Overview

An important aspect of operating system design is organizing computations that run concurrently and share
memory. Concurrency concerns are paramount when designingmulti-threaded programs that share some
critical resource, be it some device or piece of memory. In this project you will write a thread library and
concurrency primitives. This document provides the background information and specification for writing
the thread library and concurrency primitives.

We will provide you with a miniature operating system kernel(called “Pebbles”) which implements
a minimal set of system calls, and some multi-threaded programs. These programs will be linked
against your thread library, stored on a “RAM disk,” and thenrun under the supervision of the Pebbles
kernel. Pebbles is documented by the companion document, “Pebbles Kernel Specification,” which should
probably be readbefore this one.

The thread library will be based on thethread fork system call provided by Pebbles, which provides
a “raw” (unprocessed) interface to kernel-scheduled threads. Your library will provide a basic but usable
interface on top of this elemental thread building block, including the ability to join threads.

You will implement mutexes and condition variables based onyour consideration of the options
provided by the x86 instruction set—including, but not limited to, theXCHG instruction for atomically
exchanging registers and memory or registers and registers.

2 Goals

• Becoming familiar with the ways in which operating systems support user libraries by providing
system calls to create processes, affect scheduling, etc.

• Becoming familiar with programs that involve a high level ofconcurrency and the sharing of critical
resources, including the tools that are used to deal with these issues.

• Developing skills necessary to produce a substantial amount of code, such as organization and
project planning.

• Working with a partner is also an important aspect of this project. You will be working with a partner
on subsequent projects, so it is important to be familiar with scheduling time to work, a preferred
working environment, and developing a good group dynamic before beginning larger projects.

• Coming to understand the dynamics of source control in a group context, e.g., when to branch and
merge.

The partner goal is an important one–this project gives you an opportunity to debug not only your code
deliverables but also your relationship with your partner.You may find that some of the same techniques
apply.

1

3 Important Dates

Wednesday, September 17thProject 2 begins

Monday, September 22ndYou should be able to draw avery detailed picture of the parent and child
stacks duringthr create() at the point when the child does its firstPUSHL instruction. In your
design multiple pictures may be equally plausible, but it isimportant that you be able to draw at least
one case in detail. It is wise for each partner to independently draw this picture before you compare
notes and agree on all the details. It is not wise to skip this step (unless you have previously written
a thread library).

Wednesday, September 24thYou should have thread creation working well enough to pass theSTARTLE

test we provide.

Friday, September 26th You should have thread creation, mutexes, and condition variables working
well.

Tuesday, September 30thIf you haven’t least begun debuggingCYCLONE and AGILITY DRIL by this
point, you run the risk of turning in a thread library with serious structural flaws and lacking
concurrency debugging experience useful for the kernel project.

Friday, October 3rd Project 2 due at 23:59:59

4 Thread Library API

The library you will write will contain:

• Thread management calls

• Mutexes and condition variables

• Semaphores

• Readers/writers locks

Please note that all lock-like objects are defined to be “unlocked” when created.

Unlike system call stubs (see “Pebbles Kernel Specification”), thread library routines need not be one-
per-source-file, but we expect you to use good judgement whenpartitioning them (and this may influence
your grade to some extent). You should arrange that the Makefile infrastructure you are given will build
your library intolibthread.a (see theREADME file in the tarball).

You may assume that programs which use condition variables will include cond.h, programs which
use semaphores will includesem.h, etc.

4.1 Thread Management API

• int thr init(unsigned int size) - This function is responsible for initializing the thread
library. The argumentsize specifies the amount of stack space which will be available for use by
threads created withthr create().

This function returns zero on success, and a negative numberon error.

2

The thread library can assume that programs using it are well-behaved in the sense that they will
call thr init(), exactly once, before calling any other thread library function (including memory
allocation functions in themalloc() family, described below) or invoking thethread fork system
call. Also, you may assume that all threads of a task using your thread library will callthr exit()
instead of directly invoking thevanish() system call (and that the root thread will callthr exit()
instead ofreturn()’ing from main()).

• int thr create(void *(*func)(void *), void *arg) - This function creates a new thread
to run func(arg). This function should allocate a stack for the new thread andthen invoke the
thread fork system call in an appropriate way. A stack frame should be created for the child, and
the child should be provided with some way of accessing its thread identifier (tid). On success the
thread ID of the new thread is returned, on error a negative number is returned.

You should pay attention to (at least) two stack-related issues. First, the stack pointer should
essentially always be aligned on a 32-bit boundary (i.e., %esp mod 4 == 0). Second, you need
to think very carefully about the relationship of a new thread to the stack of the parent thread,
especially right after thethread fork system call has completed.

• int thr join(int tid, void **statusp) -

This function “cleans up” after a thread, optionally returning the status information provided by the
thread at the time of exit.

The target threadtid may or may not have exited beforethr join() is called; if it has not, the
calling thread will be suspended until the target thread does exit.

If statusp is not NULL, the value passed tothr exit() by the joined thread will be placed in the
location referenced bystatusp.

Only one thread may join on any given target thread. Other attempts to join on the same thread
should return an error promptly. If threadtid was not created beforethr join(tid) was called,
an error will be returned.

This function returns zero on success, and a negative numberon error.

• void thr exit(void *status) - This function exits the thread with exit statusstatus. If a
thread other than the root thread returns from its body function instead of callingthr exit(), the
behavior should be the same as if the function had calledthr exit() specifying the return value
from the thread’s body function.

Note thatstatus is not a “pointer to a void.” It is frequently not a pointer to anything of any kind.
Instead,status is a pointer-sized opaque data type which the thread librarytransports uninterpreted
from the caller ofthr exit() to the caller ofthr join().

• int thr getid(void) - Returns the thread ID of the currently running thread.

• int thr yield(int tid) - Defers execution of the invoking thread to a later time in favor of
the thread with IDtid. If tid is -1, yield to some unspecified thread. If the thread with IDtid is
not runnable, or doesn’t exist, then an integer error code less than zero is returned. Zero is returned
on success.

Note that the “thread IDs” generated and accepted by your thread library routines (e.g.,thr getid(),
thr join()) are not required to be the same “thread IDs” which are generated and accepted by the thread-
related system calls (e.g.,thread fork, gettid(), cas2i runflag()). If you think about how you

3

would implement an “M:N” thread library, or a user-space thread library, you will see why these two
name spaces cannot always be the same. Whether or not you use kernel-issued thread ID’s as your thread
library’s thread ID’s is a design decision you will need to consider.

However, youmust not aggressively recycle thread ID’s, as this significantly reduces the utility of,
e.g.,thr yield().

4.2 Mutexes

Mutual exclusion locks prevent multiple threads from simultaneously executing critical sections of code.
To implement mutexes you may use theXCHG instruction documented on page 3-714 of the Intel Instruction
Set Reference. For more information on the behavior of mutexes, feel free to refer to the text, or to the
Solaris or Linuxpthread mutex init() manual page.

• int mutex init(mutex t *mp) - This function should initialize the mutex pointed to bymp.
The effects of using a mutex before it has been initialized, or of initializing it when it is already
initialized and in use, are undefined (and may be startling).This function returns zero on success,
and a negative number on error.

• int mutex destroy(mutex t *mp) - This function should “deactivate” the mutex pointed to
by mp. The effects of using a mutex from the time of its destructionuntil the time of a possible
later re-initialization are undefined. If this function is called while the mutex is locked, it should
immediately return an error. This function returns zero on success, and a negative number on error.

• int mutex lock(mutex t *mp) - A call to this function ensures mutual exclusion in the region
between itself and a call tomutex unlock(). A thread calling this function while another thread is
in an interfering critical section should block until it is able to claim the lock. This function returns
zero on success, and a negative number on error.

• int mutex unlock(mutex t *mp) - Signals the end of a region of mutual exclusion. The calling
thread gives up its claim to the lock. This function returns zero on success, and a negative number
on error.

For the purposes of this assignment, you may assume that a mutex should be unlocked only by the
thread that most recently locked it.1

4.3 Condition Variables

Condition variables are used for waiting, for a while, for mutex-protected state to be modified by some
other thread(s). A condition variable allows a thread to voluntarily relinquish the CPU so that other threads
may make changes to the shared state, and then tell the waiting thread that they have done so. If there is
some shared resource, threads may de-schedule themselves and be awakened by whichever thread was
using that resource when that thread is finished with it. In implementing condition variables, you may use
your mutexes, and thecas2i runflag() system call. For more information on the behaviour of condition
variables, you may refer to the Solaris or Linux documentation onpthread cond wait().

1Opinions differ, but you might want to wait until after the scheduling lecture(s) before solidifying yours.

4

• int cond init(cond t *cv) - This function should initialize the condition variable pointed to
by cv. The effects of using a condition variable before it has beeninitialized, or of initializing it
when it is already initialized and in use, are undefined. Thisfunction returns zero on success and a
number less than zero on error.

• int cond destroy(cond t *cv) - This function should “deactivate” the condition variable
pointed to bycv. The effects of using a condition variable from the time of its destruction until the
time of a possible later re-initialization are undefined. Ifcond destroy() is called while threads are
still blocked waiting on the condition variable, then the function should return an error immediately.
This function returns zero on success and a number less than zero on error.

• int cond wait(cond t *cv, mutex t *mp) - The condition-wait function allows a thread to
wait for a condition and release the associated mutex that itneeds to hold to check that condition.
The calling thread blocks, waiting to be signaled. The blocked thread may be awakened by a
cond signal() or a cond broadcast(). This function returns zero on success, and a negative
number on error. In the case of a successful return fromcond wait(), *mp has been re-acquired on
behalf of the calling thread.

• int cond signal(cond t *cv) - This function should wake up a thread waiting on the
condition variable pointed to bycv, if one exists. This function returns zero on success, and a
negative number on error. Note that “no threads waiting” isnot an error condition.

• int cond broadcast(cond t *cv) - This function should wake up all threads waiting on the
condition variable pointed to bycv. This function returns zero on success, and a negative number
on error.

Note thatcond broadcast() shouldnot awaken threads which may invokecond wait(cv) “after”
this call tocond broadcast() has begun execution.2

4.4 Semaphores

As discussed in class, semaphores are a higher-level construct than mutexes and condition variables.
Implementing semaphores on top of mutexes and condition variables should be a straightforward but
hopefully illuminating experience.

• int sem init(sem t *sem, int count) - This function should initialize the semaphore
pointed to bysem to the valuecount. Effects of using a semaphore before it has been initialized
may be undefined. This function returns zero on success and a number less than zero on error.

• int sem destroy(sem t *sem) - This function should “deactivate” the semaphore pointed to by
sem. Effects of using a semaphore after it has been destroyed maybe undefined. Ifsem destroy()
is called while threads are still blocked waiting on the semaphore, then the function should return
an error immediately. This function returns zero on successand a number less than zero on error.

• int sem wait(sem t *sem) - The semaphore wait function allows a thread to decrement a
semaphore value, and may cause it to block indefinitely untilit is legal to perform the decrement.
This function returns zero on success, and a negative numberon error.

2If that sounds a little fuzzy to you, you’re right–but if you think about it a bit longer it should make sense.

5

• int sem signal(sem t *sem) - This function should wake up a thread waiting on the
semaphore pointed to bysem, if one exists, and should update the semaphore value regardless.
This function returns zero on success, and a negative numberon error.

4.5 Readers/writers locks

Readers/writers locks allow multiple threads to have “read” access to some object simultaneously. They
enforce the requirement that if any thread has “write” access to an object, no other thread may have either
kind of access (“read” or “write”) to the object at the same time. These types of locking behaviors are often
called “shared” (for readers) and “exclusive” (for writers) locks. Refer to Section 7.5.2 of the textbook for
details.

The generic version of this problem is called the “readers/writers problem.” Two standard formulations
of the readers/writers problem exist, called unimaginatively the “first” and “second” readers/writers
problems. In the “first” readers/writers problem, no readerwill be forced to wait unless a writer has
already obtained an exclusive lock. In the “second” readers/writers problem, no new reader can acquire
a shared lock if a writer is waiting. You should think throughthe reasons that these formulations allow
starvation of different access types; starvation of writers in the case of the “first” readers/writers problem
and starvation of readers in the case of the “second” readers/writers problem.

In addition to a correct implementation of shared and exclusive locking, we expect you to implement
a solution that is “at least of good as” a solution to the “second” readers/writers problem. That is, your
solution should not allow starvation of writers. Your solution need not strictly follow either of the above
formulations: it is possible to build a solution which does not starve any client. No matter what you choose
to implement, you should explain what, how, and why.

You may choose which underlying primitives (e.g., mutex/cvar or semaphore) you use to implement
readers/writers locks. Once again, you should explain the reasoning behind your choice.

• int rwlock init(rwlock t *rwlock) - This function should initialize the lock pointed to by
rwlock. Effects of using a lock before it has been initialized may beundefined. This function
returns zero on success and a number less than zero on error.

• int rwlock destroy(rwlock t *rwlock) - This function should “deactivate” the lock pointed
to by rwlock. Effects of using a lock after it has been destroyed may be undefined. If
rwlock destroy() is called while the lock is held by any number of threads or while threads are
still blocked waiting on the lock, then the function should return an error immediately. This function
returns zero on success and a number less than zero on error.

• int rwlock lock(rwlock t *rwlock, int type) - The type parameter is required to be
either RWLOCK READ (for a shared lock) orRWLOCK WRITE (for an exclusive lock). This function
blocks the calling thread until it has been granted the requested form of access. This function returns
zero on success, and a negative number on error.

• int rwlock unlock(rwlock t *rwlock) - This function indicates that the calling thread is
done using the locked state in whichever mode it was granted access for. Whether a call to this
function does or does not result in a thread being awakened depends on the policy you chose to
implement. This function returns zero on success, and a negative number on error.

Note: Wewill not grade your readers/writers implementation unless your thread library passes a
specified series of tests; see Section10.

6

4.6 Safety & Concurrency

Please keep in mind that much of the code for this project mustbe thread safe. In particular the thread
library itself should be thread safe. However, by its naturea thread library must also be concurrent. In
other words, you maynot solve the thread-safety problem with a hammer, such as usinga global lock to
ensure that only one thread at a time can be running thread library code. In general, it should be possible
for many threads to be running each library interface function “at the same time.”

As you design your library, your model should be that some system calls “take a while to run.” You
should try to avoid situations where “too many” threads are waiting “too long” because of this. This
paragraph provides a design hint, not implementation rules: acting on it will require you to think about
system calls and the meanings of “too many” and “too long.”

4.7 Distribution Files

To begin working on the project, fetch and unpack the tarballposted on the course web page. Please read
the README included therein.

5 Documentation

For each project in 15-410, functions and structures shouldbe documented using doxygen. Doxygen uses
syntax similar to Javadoc. The Doxygen documentation can befound on the course website. The provided
Makefile has a target calledhtml doc that will invoke doxygen on the source files listed in the Makefile.

6 Thread Group Library

A commonly used program paradigm involves one or more manager threads overseeing the completion of
a large task which has been split into parts assigned to a poolof worker threads. Examples of this model
include databases, Apache, and Firefox. Once a worker thread has completed its job, it exits; manager
threads dispatch new worker threads based on system load, new requests, and the results obtained by
previous worker threads. In this environment it is not convenient for a manager to know which particular
worker thread it should next callthr join() on; instead it is convenient to wait until the next thread in
the worker pool completes.

We have provided you with a simple library implementing “thread groups.” This library essentially
provides an abstraction layer above the thread library you will write–a compliant program will use
thrgrp create() andthrgrp join() instead of callingthr create() andthr join() directly.

These functions and their requisite data structures are defined in 410user/libthrgrp/thrgrp.c and
410user/libthrgrp/thrgrp.h.

• thrgrp group t
A structure representing a thread group.

• thrgrp init group(thrgrp group t *tg)
This function initializes a thread group. It must be called before the thread group is used for
anything. Returns 0 on success, non-zero otherwise.

7

• thrgrp destroy group(thrgrp group t *tg)
This function destroys a thread group, cleaning up all of itsmemory. This should be called if a
thread group isn’t to be used further. The effects of using a thread group after it has been destroyed
are be undefined. Returns 0 on success, non-zero otherwise.

• thrgrp create(thrgrp group t *tg, void *(*func)(void *), void *arg)
This function spawns a new thread (analogous tothr create()) in the threadgrouptg. The
spawned thread must not callthr exit(). Instead,func() should return an exit code (of type
void *) which will be made available to a manager thread.

Returns 0 on success, non-zero otherwise.

• thrgrp join(thrgrp group t *tg, void **statusp)
If there are any unreaped threads in the thread grouptg then it will reap one of them, setting
*statusp appropriately, and return. If there are no unreaped threadsin the group, it will block
until one does exit, reap it, and return.

7 The C Library

This is simply a list of the most common library functions that are provided. For details on using these
functions please see the appropriateman pages.

Other functions are provided that are not listed here. Please see the appropriate header files for a full
listing of the provided functions.

Some functions typically found in a C I/O library are provided by410user/libstdio.a. The header
file for these functions is410user/libstdio/stdio.h, aka#include <stdio.h>.

• int putchar(int c)

• int puts(const char *str)

• int printf(const char *format, ...)

• int sprintf(char *dest, const char *format, ...)

• int snprintf(char *dest, int size, const char *formant, ...)

• int sscanf(const char *str, const char *format, ...)

• void lprintf(const char *format, ...)

Note thatlprintf() is the user-space analog of thelprintf kern() you used in Project 1.

Some functions typically found in various places in a standard C library are provided by
410user/libstdlib.a. The header files for these functions arestdlib.h, assert.h, andctype.h.

• int atoi(const char *str)

• long atol(const char *str)

• long strtol(const char *in, const char **out, int base)

8

• unsigned long strtoul(const char *in, const char **out, int base)

• void panic(const char *format, ...)

• void assert(int expression)

We are providing you withnon-thread-safe versions of the standard C library memory allocation
routines. You arerequired to provide a thread-safe wrapper routine with the appropriate name (remove the
underscore character) for each provided routine. These should be genuine wrappers, i.e., donot copy and
modify the source code for the provided routines.

• void * malloc(size t size)

• void * calloc(size t nelt, size t eltsize)

• void * realloc(void *buf, size t new size)

• void free(void *buf)

You may assume that no calls to functions in the “malloc() family” will be made before the call to
thr init().

These functions will typically seek to allocate memory regions from the kernel which start at the top
of the data segment and proceed to grow upward. You will thus need to plan your use of the available
address space with some care.

Some functions typically found in a C string library are provided by410user/libstring.a. The
header file for these functions is410user/libstring/string.h.

• int strlen(const char *s)

• char *strcpy(char *dest, char *src)

• char *strncpy(char *dest, char *src, int n)

• char *strdup(const char *s)

• char *strcat(char *dest, const char *src)

• char *strncat(char *dest, const char *src, int n)

• int strcmp(const char *a, const char *b)

• int strncmp(const char *a, const char *b, int n)

• void *memmove(void *to, const void *from, unsigned int n)

• void *memset(void *to, int ch, unsigned int n)

• void *memcpy(void *to, const void *from, unsigned int n)

9

8 Debugging Support Code

The sameMAGIC BREAK macro which you used in Project 1 is also available to user code in Project 2 if
you#include theuser/inc/magic break.h header file.

The function calllprintf() may be used to output debugging messages from user programs.Its
prototype is in410user/libsimics/simics.h.

Also, user code can be symbolically debuged using the Simicssymbolic debugger.If you restrict
yourself to debugging with printf() it may cost you significant amounts of time.

9 Deliverables

Implement the functions for the thread library, and concurrency tools conforming to the documented APIs.
Hand in all source files that you generate. Make sure to provide a design description in README.dox,
including an overview of existing issues and any interesting design decisions you made.

10 Grading Criteria

You will be graded on the completeness and correctness of your project. A complete project is composed
of a reasonable attempt at each function in the API. Also, a complete project follows the prescribed build
process, and is well documented. A correct project implements the provided specification. Also, code
using the API provided by a correct project will not be killedby the kernel, and will not suffer from
inconsistencies due to concurrency errors in the library. Please note that there exist concurrency errors
that even carefully-written test cases may not expose. Readand think through your code carefully. Do not
forget to consider pathological cases.

The most important parts of the assignment to complete are the thread management, mutex, and
condition variable calls. These should be well-designed, solidly implemented, and thoroughly tested with
misbehave() (see below). It is probably unwise to devote substantial coding effort to the other parts of
the library before the core is reliable. In particular, wewill not grade readers/writers implementations for
Project 2 submissions which do not pass the “hurdle” subset of the test suite (see the project web page for
details).

11 Debugging

11.1 Requests for Help

Please do not ask for help from the course staff with a messagelike this:

The kernel is killing my threads! Why?

or

Why is my program stuck inmalloc()?

10

An important part of this class is developing your debuggingskills. In other words, when you complete
this class you should be able to debug problems which you previously would not have been able to handle.

Thus, when faced with a problem, you need to invest some time in figuring out a way to characterize
it and close in on it so you can observe it in the actual act of destruction. Your reflex when running into a
strange new problem should be to start thinking, not to startoff by asking for help.

Having said that, if a reasonable amount of time has been spent trying to solve a problem and no
progress has been made, do not hesitate to ask a question. Butplease be prepared with a list of details and
an explanation of what you have tried and ruled out so far.

11.2 Debugging Strategy

In general, when confronted by a mysterious problem, you should begin with a “story” of what youexpect
to be happening and measure the system you’re debugging to see where its behavior diverges from your
expectations.

To do this your story must be fairly detailed. For example, you should have a fairly good mental model
of the assembly code generated from a given line of C code. To understand why “a variable has the wrong
value” you need to know how the variable is initialized, where its value is stored at various times, and how
it moves from one location to another. If you’re confused about this, it is probably good for you to spend
some time withgcc -S.

Once your “story” is fleshed out, you will need to measure the system at increasing levels of detail
to determine the point of divergence. You will find yourself spending some time thinking about how to
pin your code down to observe whether or not a particular misbehavior is happening. You may need to
write some code to periodically test data-structure consistency, artificially cause a library routine to fail to
observe how your main code responds, log actions taken by your code and write a log-analyzer perl script,
etc.

Please note that the user-space memory allocator we provideyou with is very similar to the allocator
written by 15-213 students in the sense that errors reportedby the allocator, or program crashes which take
place inside the allocator, are likely to mean that the user of some memory overflowed it and corrupted the
allocator’s meta-data. In the other direction, complaintsby “lmm” are coming from the kernel’s memory
allocator, and probably indicate kernel bugs (see below).

11.3 Reference Kernel Panics and Crashes

If the Pebbles kernel tells you something went horribly wrong and drops you into the debugger, don’t
panic. It probably won’t happen to most of you, but we are fully aware that we haven’t nailed the last bug
yet...

It’s probably a good idea for you to tar up your working directory and make a brief note of what
you were doing when the kernel ran into trouble. For example,what sequence of test programs had you
run since boot? If you have a short repeatable way of getting the kernel to die that’s excellent, and we’d
appreciate a snapshot that lets us reproduce it, even if you then go on to modify your code to make the
crash go away.

To send us a snapshot, tar it up somewhere in your group’s scratch directory,

tar cfz .../mygroup/scratch/kcrash.somename.tgz .

create a brief summary of how to reproduce it,

11

$EDITOR .../mygroup/scratch/kcrash.somename.README

and send a brief note to the staff mailing list. While such an event will of course attract our attention,
it’s not likely that we can provide a fix in a small number of minutes...you may need to try to guess what
went wrong and work around it temporarily, or work on some other part of your project for a while.

12 Strategy

12.1 Suggestions

First, this may be the first time you have written code with this variety and density of concurrency hazards.
If so, you will probably find this code much harder to debug than code you’ve written before, i.e., you
should allocate more debugging time than usual. Of course, the silver lining in this cloud is that experience
debugging concurrent code will probably be useful to you after you leave this class.

Second,several of the thread library functions aremuch harder then they first appear. It is fairly likely
that you will write half the code for a thread library function before realizing that you’ve never written
“that kind of code” before. When this happens the best courseof action is probably to come to a complete
stop, think your way through the problem, and then explain the problem and your proposed solution to
your partner. It may also happen that as you write your fifth function you realize your second must be
scrapped and re-written.

Third, the Pebbles kernel offers a feature intended to help you increase the solidity of your code. A
special system call,void misbehave(int mode), alters the behavior of the kernel in ways which may
expose unwarranted assumptions or concurrency bugs in yourlibrary code. Values formode range from
zero (the default behavior) to thirty-one, or you may select-1 for behavior which may be particularly
challenging. As you experiment withmisbehave(), you may become able to predict or describe the
behavior of a particularmode. Each group must keep confidential its own understanding of the meanings
of particularmode values.

Fourth, we recommendagainst splitting the assignment into two parts, working separately until the
penultimate day, and then meeting to “put the pieces together.” Instead, we recommend the opposite,
namely that you make it a habit to readand talk about each other’s code every few days.You may
encounter an exam question related to code your partner wrote.

Fifth, we have observed that a particularly bad division of labor is for one person to write system call
stubs, linked lists, queues, and maybe semaphores, while the other person writes everything else. This puts
the first person at risk of doing poorly on exams.

Sixth, instead of typing linked-list traversal code 100 times throughout your library, thus firmly and
eternally committing yourselves to a linear-time data structure, give some consideration to encapsulation.

Seventh, we strongly recommend that you use a source-control system to manage the evolution and/or
devolution of your code. While the complexity of this project does not outright necessitate the use of
source control, this is a good opportunity for you to get usedto it and set up a work flow with your partner.

Eighth, don’t forget to do an update whenmake starts beeping at you. If you’re in the middle of
debugging a problem, you probably don’t want to switch kernels, but you generallydo want to upgrade
when we issue new things, because we do so to help. A particularly bad thing to do is to work on your
thread library for two weeks using the very oldest kernel andthen 15 minutes before the assignment
deadline switch to the very newest one and find that one time ina thousand you callnew pages() in an

12

improper way which got through before and doesn’t any more. So don’t do that. The update process gives
you the power to decide when to import changes, but that meansthe responsibility lies with you as well.

Ninth, when you are doing design, ask yourself what things your thread library can accomplish in
parallel. Also, if you ever find yourself confused by exactlywhat “before” means, consider what it might
mean on a multi-processor machine.

Finally, we have observed that the single most effective decision a group can make is to schedule
standing “work meetings” of one or two hours duration two or three times per week. It is important that
these be at fixed times agreed upon in advance. Groups that do this consistently do better on the thread
library and kernel projects than groups who don’t.

12.2 Suggested Steps

1. Read the handout.

2. Agree on two to three meeting times per week. An excellent thing to discuss early on is what source
control system to use. By the way, make sure you configure it tonot track changes to large random
files such asbootfd.img, bootfd.gz, user apps.S, the contents oftemp/, etc., or your disk quota
will be consumed very quickly.

3. Promptly write system call wrappers for one or two system calls and runa small test program using
those system calls. This is probably the best way to engage yourself in the project and to get an
initial grasp of its scope. Good system calls to begin with are set status() andvanish(), since
the C run-time start-up code invokes theexit() library routine, which depends on them. A good
second step would beprint().

4. Write the remaining system call wrappers (with the exception of thread fork).

5. Design and make a draft version of mutexes and condition variables. In order to do that, you will
probably need to perform a hazard analysis of which code sequences in your thread library would
suffer if the scheduler switched from executing one of your threads to another. Now would not be a
bad time to read the source to the “thread group” library (Section 6).

6. If you haven’t yet, agree on two to three meeting times per week.

7. What can you test at this point? Be creative.

8. Think hard about stacks. What should the child’s stack look like before and after athread fork?
In fact, it is probably a good idea for you to draw every detailof the parent’s stack and the child’s
stack before and afterthread fork. You should reach this point by Monday, September 22nd .

9. Write and testthr init() andthr create(). Run theSTARTLE test. You should reach this point
by Wednesday, September 24th .

10. Writethr exit(). Don’t worry about reporting exit status, yet—it’s tricky enough without that!

11. Test mutexes and condition variables. Try to reach this point by Friday, September 26th .

12. Try all themisbehave() flavors.

13. Write and testthr join().

13

14. Worry about reporting the exit status.

15. This might be a good point to relax and have fun writing semaphores.

16. Test. Debug. Test. Debug. Test. Sleep once in a while.

17. Try all themisbehave() flavors (again). Note that most of the tests provided to you bythe course
staff (see410user/progs/README) are really multiple tests if you think about it... you probably
shouldn’t declare a test “passed” untilall versions pass. Remember that you should be running
CYCLONE andAGILITY DRIL by Tuesday, September 30th .

18. Design, implement, and test readers/writers locks.

19. Celebrate! You have assembled a collection of raw systemcalls into a robust and useful thread
library.

12.3 Questions & Challenges

Below we briefly discuss common questions about this assignment and issue several optional challenges.
It is very important that your implementation be solid, and you should not be diverted from this primary
goal by attempting to solve these challenges. However, we are providing this challenge list as a way for
interested students to deepen their understanding and sharpen their design skills.

12.3.1 Questions

From time to time we are asked how many threads must be supported by a library implementation. In
general the answer is that the thread library should not be a limiting factor—it should be possible to use all
available memory for threads, and of course it could happen one day that Pebbles would run on a machine
with more memory. If, however, you feel youmust impose an a-priori static limit on the number of threads
(or some other run-time feature), we will try to grade gentlyif you document your reasoning.

Sometimes we are asked to state a simple requirement about bounded waiting (e.g., “Are we required
to implement the bounded waiting algorithm presented in thelecture slides?”). Since this is a design class,
you should give serious consideration to the issue of bounded waiting and the interplay between bounded
waiting and the system environment you will be using. Then you should be in a position to evaluate the
necessity of ensuring or approximating bounded waiting andhow you might go about doing that. Whatever
you choose to do should sensibly balance cost against utility. Your project documentation should briefly
but convincingly explain your reasoning.

It has been pointed out to us that, if a thread is killed by the kernel as a result of some improper
behavior, your thread library has no way to find out about thisand take remedial action. This is true, and
thus the thread library cannot be held responsible for grossmisbehavior on the part of threads it hosts. In
fact, you can probably think of other sorts of errant behavior which your library can’t reasonably protect
against.

12.3.2 Challenge: efficientthr getid()

There is an easy way to implementthr getid(), but it is woefully inefficient. Can you do better? We
have given you a serious hint.

14

12.3.3 Challenge:thr init()

Is it really necessary thatthr init() be called beforemalloc()? How might you buildmalloc()
to make that unnecessary? Is it really necessary to require the root thread of a task to explicitly call
thr exit()? Is there a waythr init() can arrange for that call to happen automatically? Hint: notall
approaches which appear to be solutions to this challenge actually are.

12.3.4 Challenge: “reaper thread”

If you feel you need a “reaper thread,” consider whether it’sreally necessary.

12.3.5 Challenge: memory-efficientthr exit()

Since there is no bound on how much time can pass between a thread exiting and its “parent” or “manager”
thread callingthr join(), it is undesirable for a “zombie thread” to hold onto large amounts of memory.
Can you avoid this situation? There are multiple approaches, with different tradeoffs.

15

	Overview
	Goals
	Important Dates
	Thread Library API
	Thread Management API
	Mutexes
	Condition Variables
	Semaphores
	Readers/writers locks
	Safety & Concurrency
	Distribution Files

	Documentation
	Thread Group Library
	The C Library
	 Debugging Support Code
	 Deliverables
	 Grading Criteria
	Debugging
	Requests for Help
	Debugging Strategy
	Reference Kernel Panics and Crashes

	 Strategy
	 Suggestions
	 Suggested Steps
	 Questions & Challenges
	Questions
	Challenge: efficient thr_getid()
	Challenge: thr_init()
	Challenge: ``reaper thread''
	Challenge: memory-efficient thr_exit()

