NFS & AFS

“*Good judgment comes from experience...
Experience comes from bad judgment.”
- Nasrudin?

Dave Eckhardt
Roger Dannenberg



Synchronization

* Crash box?
* Today

- NFS, AFS
- Partially covered by textbook: 11.9, 17.6
- Chapter 17 is short, why not just read It?



Outline

* Why remote file systems?
* VES interception
* NFS vs. AFS

- Ping-pong mode: 5 topics discussed twice



Why?

* Why remote file systems?
* Lots of “access data everywhere” technologies
- Laptop

- 6G Hitachi MicroDrive fits in a CompactFlash
slot

- Multi-gigabyte flash-memory keychain USB
devices

- 1IPod
* Are remote file systems dinosaurs?



Remote File System Benefits

* Reliability
- Not many people carry multiple copies of data
* Multiple copies with you aren't much protection

- Backups are nice

e Machine rooms are nice

- Temperature-controlled, humidity-controlled
- Fire-suppressed

e Time travel Is nice too

* Sharing
- Allows multiple users to access data
- May provide authentication mechanism



Remote File System Benefits

e Scalability
- Large disks are cheaper
* |ocality of reference

- You don't use every file every day...

* Why carry everything in expensive portable storage?
* Auditabllity

- Easier to know who said what when with central
storage...



What Is A Remote File System?

e OS-centric view

- Something that supports file-system system
calls “for us”

* Other possible views
- RFS/DFS architect, for example
- Mostly out of scope for this class
* Compared today

- Sun Microsystems NFS (specifics are v2)
- CMU/IBM/Transarc/IBM/open-source AFS



VES Interception

* VES provides “pluggable” file systems
* Standard flow of remote access

- User process calls read()
- Kernel dispatches to VOP_READ() in some VFS
- nfs_read()

* check local cache
* send RPC to remote NFS server
* put process to sleep



VES Interception

e Standard flow of remote access (continued)

- client kernel process manages call to server

* retransmit if necessary

* convert RPC response to file system buffer
* store in local cache

* wake up user process

- back to nfs_read|()

* copy bytes to user memory
* Same story for AFS



Comparison

Architectural assumptions & goals
Namespace

Authentication, access control

/O flow

Rough edges

10



NFS Assumptions, goals

* Workgroup file system

- Small number of clients
- Very small number of servers

* Single administrative domain

- All machines agree on “set of users”
* ...which users are in which groups

- Client machines run mostly-trusted OS
* “User #37 says read(...)"

11



NFS Assumptions, goals

e “Stateless” file server

- Of course files are “state”, but...
- Server exports files without creating extra state

* No list of “who has this file open”
* No “pending transactions” across crash

- Result: crash recovery “fast”, protocol “simple”

12



NFS Assumptions, goals

e “Stateless” file server

- Of course files are “state”, but...
- Server exports files without creating extra state

* No list of “who has this file open”
* No “pending transactions” across crash

- Result: crash recovery “fast”, protocol “simple”
* Some inherently “stateful” operations (locking!!)

13



NFS Assumptions, goals

e “Stateless” file server

- Of course files are “state”, but...
- Server exports files without creating extra state

* No list of “who has this file open”
* No “pending transactions” across crash

- Result: crash recovery “fast”, protocol “simple”
* Some inherently “stateful” operations (locking!!)

- Handled by “separate service” “outside of NFS”
* Slick trick, eh?

14



AFS Assumptions, goals

* Global distributed file system

- Uncountable clients, servers
- “One AFS”, like “one Internet”
* Why would you want more than one?
* Multiple administrative domains

- username@cellname

* deQu@andrew.cmu.edu
* davide@cs.cmu.edu

15



AFS Assumptions, goals

* Client machines are un-trusted

- Must prove they act for a specific user
* Secure RPC layer
- Anonymous “system:anyuser”

* Client machines have disks (!!)
- Can cache whole files over long periods
* Write/write and write/read sharing are rare

- Most files updated by one user
- Most users on one machine at a time

16



AFS Assumptions, goals

* Support many clients

- 1000 machines could cache a single file
- Some local, some (very) remote

17



NFS Namespace

* Constructed by client-side file system mounts

- mount serverl:/usr/local /usr/local
- mount server2:/usr/spool/mail /usr/spool/mail

* Group of clients can achieve common
namespace

- Every machine can execute same mount
seguence at boot

- If system administrators are diligent

18



NFS Namespace

* “Auto-mount” process mounts based on “maps”

- /lhome/dae means serverl:/home/dae
- /home/owens means server2:/home/owens

* Referring to something in /lhome may trigger an
automatic mount

- “After a while” the remote file system may be
automatically unmounted

- Lots of corner cases

19



NFS Security

* Client machine presents credentials

- user #, list of group #s —from Unix process
* Server accepts or rejects credentials

- “root squashing”

* map uid O to uid -1 unless client on “special machine”

list
e Kernel process on server “adopts” credentials
- Sets user #, group vector based on RPC

- Makes system call (e.g., read()) with those
credentials

20



AFS Namespace

* Assumed-global list of AFS cells
* Everybody sees same files in each cell

- Multiple servers inside cell invisible to user

* Group of clients can achieve private
namespace

- Use custom cell database

21



AFS Security

* Client machine presents Kerberos ticket
- Allows arbitrary binding of (machine,user) to
(realm,principal)

e davide on a cs.cmu.edu machine can be
deOu@andrew.cmu.edu

* iff the password is known!
* Server checks against access control list

22



AFS ACLs

* Apply to directory, not to individual files
* ACL format

- deOu rhdwka
- davide@cs.cmu.edu rl

- deOQu:friends rl
* Negative rights

- Disallow “joe rI” even though joe Is In
deOu:friends

23



AFS ACLs

* AFS ACL semantics are not Unix semantics

- Some parts obeyed in a vague way

* Cache manager checks for files being executable,
writable

- Many differences

* Inherent/good: can name people in different
administrative domains

* “Just different”

— ACLs are per-directory, not per-file
- Different privileges: create, remove, lock

- Not exactly Unix / not tied to Unix

24



NFS protocol architecture

* root@client executes “mount filesystem” RPC

- returns “file handle” for root of remote file
system

* client RPC for each pathname component

- /usr/local/lib/emacs/foo.el in /usr/local file system

* h = lookup(root-handle, “lib”)
* h = lookup(h, “emacs”)
* h = lookup(h, “foo.el”)
- Allows disagreement over pathname syntax

* ook, Ma, no “/’!

25



NFS protocol architecture

* |/O RPCs are idempotent

- multiple repetitions have same effect as one

- lookup(h, “emacs”) generally returns same result
- read(file-handle, offset, length) = same bytes

- write(file-handle, offset, buffer, bytes) = “ok”
* RPCs do not create server-memory state

- no RPC calls for open()/close()

— write() succeeds (to disk), or fails, before RPC
completes

26



NFS file handles

e Goals

- Reasonable size
- Quickly map to file on server
- “Capability”
* Hard to forge, so possession serves as “proof”
* Implementation (inode #, inode generation #)
- Inode # - small, fast for server to map onto data

- “Inode generation #” - must match value stored
In Inode

* “unguessably random” number chosen in create() 27



NFS Directory Operations

* Primary goal

- Insulate clients from server directory format
* Approach

- readdir(dir-handle, cookie, nbytes) returns list

* name, inode # (for display by Is -I), cookie

28



AFS protocol architecture

* VVolume = miniature file system

- One user's files, project source tree, ...

- Unit of disk quota administration, backup

- Mount points are pointers to other volumes
* Client machine has Cell-Server Database

- [afs/andrew.cmu.edu iIs a cell
- protection server handles authentication

- volume location server maps volumes to file
servers

29



AFS protocol architecture

* Volume location is dynamic

- Moved between servers transparently to user
* Volumes may have multiple replicas

- Increase throughput, reliability

- Restricted to “read-only” volumes

e /usr/local/bin
e /afs/andrew.cmu.edu/usr

30



AFS Callbacks

* Observations

- Client disks can cache files indefinitely
* Even across reboots
- Many files nearly read-only

* Contacting server on each open() is wasteful
* Server issues callback promise

- “If this file changes in 15 minutes, | will tell you”
* Via callback break message
- 15 minutes of free open(), read() for that client

* More importantly, 15 minutes of peace for server

31



AFS file identifiers

* \Volume number

- Each file lives in a volume
- Unlike NFS “serverl's /usrQ”

* File number
- Inode # (as NFS)
* “Uniquifier”
- allows Inodes to be re-used
- Similar to NFS file handle inode generation #s

32



AFS Directory Operations

* Primary goal

- Don't overload servers!
* Approach

- Server stores directory as hash table on disk
- Client fetches entire directory as if a file
- Client parses hash table

* Directory maps name to fid

- Client caches directory (indefinitely, across
reboots)

e Server load reduced

33



AFS access pattern

open(*/afs/cs.cmu.edu/service/systypes”)

- VES layer hands off “/afs” to AFS client
module

lent maps cs.cmu.edu to pt & vidb servers
lent authenticates to pt server

lent volume-locates root.cell volume

lent fetches “/” directory

lent fetches “service” directory

lent fetches “systypes” file



AFS access pattern

open(*/afs/cs.cmu.edu/service/newCSDB")

- VES layer hands off “/afs” to AFS client module

- Client fetches “newCSDB?” file
open(“/afs/cs.cmu.edu/service/systypes”)

- Assume

* File Is In cache
e Server hasn't broken callback
* Callback hasn't expired

- Client can read file with no server interaction

35



AFS access pattern

* Data transfer is by chunks

- Minimally 64 KB
- May be whole-file

* Writeback cache

- Opposite of NFS “every write Is sacred”
- Store chunk back to server

* When cache overflows
* On last user close()

36



AFS access pattern

* |s writeback crazy?

- Write conflicts “assumed rare”
- Who needs to see a half-written file?

37



NFS “rough edges”

* Locking

- Inherently stateful
* lock must persist across client calls
- lock(), read(), write(), unlock()
- “Separate service”

* Handled by same server
* Horrible things happen on server crash
* Horrible things happen on client crash

38



NFS “rough edges”

* Some operations not really idempotent

- unlink(file) returns “ok” once, then “no such file”
- server caches “a few” client requests

e Caching
- No real consistency guarantees

- Clients typically cache attributes, data “for a
while”

- No way to know when they're wrong

39



NFS “rough edges”

* | arge NFS installations are brittle

- Everybody must agree on many mount points
- Hard to load-balance files among servers

e NO volumes
e No atomic moves

* Cross-realm NFS access basically nonexistent

- No good way to map uid#47 from an unknown
host

40



AFS “rough edges’

* L ocking
- Server refuses to keep a waiting-client list

- Client cache manager refuses to poll server
- Result

* Lock returns “locked” or “try again later”
* User program must invent polling strategy

* Chunk-based I/O

- No real consistency guarantees
- close() failures are surprising to many programs

41



AFS “rough edges”

e ACLs apply to directories

- “Makes sense” If files will inherit from directories
* Not always true
- Confuses users

* Directories inherit ACLS

- Easy to expose a whole tree accidentally
- What else to do?

* No good solution known
* DFS horror

42



AFS “rough edges’

* Small AFS installations are punitive

- Step 1: Install Kerberos

*» 2-3 servers
* Inside locked boxes!

- Step 2: Install ~4 AFS servers (2 data, 2 pt/vidb)
- Step 3: Explain Kerberos to your users

* Ticket expiration!
- Step 4: Explain ACLs to your users

43



Summary - NFS

Workgroup network file service
Any Unix machine can be a server (easily)
Machines can be both client & server

- My files on my disk, your files on your disk
- Everybody in group can access all files

Serious trust, scaling problems

“Stateless file server’” model only partial
success



Summary —AFS

Worldwide file system
Good security, scaling
Global namespace

“Professional” server infrastructure per cell

- Don't try this at home
- Only ~180 AFS cells (basically static since 2002)

* 8 are cmu.edu, ~15 are in Pittsburgh
“No write conflict” model only partial success

45



Further Reading

- RFC 1094 for v2 (3/1989)
- RFC 1813 for v3 (6/1995)

- RFC 3530 for v4 (4/2003, not yet universally
available)

46



Further Reading

* AFS

- “The ITC Distributed File System: Principles and
Design”, Proceedings of the 10th ACM
Symposium on Operating System Principles,
Dec. 1985, pp. 35-50.

- “Scale and Performance in a Distributed File
System”, ACM Transactions on Computer
Systems, Vol. 6, No. 1, Feb. 1988, pp. 51-81.

- IBM AFS User Guide, version 36
- http://www.cs.cmu.edu/~help/afs/index.html

47



