
15-410, F'08

File System (Internals)
Nov. 3, 2008
Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

Greg HartmanGreg Hartman

L27_Filesystem

15-410
“...Does this look familiar?...”

15-410, F'062

Synchronization

TodayToday
� Chapter 11 (not: Log-structured, NFS, WAFL)

15-410, F'063

Outline

File system code layers (abstract)File system code layers (abstract)

Disk, memory structuresDisk, memory structures

Unix “VFS” layering indirectionUnix “VFS” layering indirection

DirectoriesDirectories

Block allocation strategies, free spaceBlock allocation strategies, free space

Cache tricksCache tricks

Recovery, backupsRecovery, backups

15-410, F'064

File System Layers

Device driversDevice drivers
� read/write(disk, start-sector, count)

Block I/OBlock I/O
� read/write(partition, block) [cached]

File I/OFile I/O
� read/write(file, block)

File systemFile system
� manage directories, free space

15-410, F'065

File System Layers

Multi-filesystem namespaceMulti-filesystem namespace
� Partitioning, names for devices
� Mounting
� Unifying multiple file system types

� UFS, ext2fs, ext3fs, reiserfs, FAT, 9660, ...

15-410, F'066

Shredding Disks

Split disk into Split disk into partitionspartitions/slices/minidisks/.../slices/minidisks/...
� PC: 4 “partitions” – e.g., Windows, FreeBSD, Plan 9
� Mac: “volumes” – can do: OS 9, OS X, user files

Or: glue disks together into Or: glue disks together into volumesvolumes/logical disks/logical disks

Partition may contain...Partition may contain...
� Paging area

� Indexed by in-memory structures
� “random garbage” when OS shuts down

� File system
� Block allocation: file # � block list
� Directory: name � file #

15-410, F'067

Shredding Disks

fdisk -s

/dev/ad0: 993 cyl 128 hd 63 sec

Part Start Size Type Flags

 1: 63 1233729 0x06 0x00

 2: 1233792 6773760 0xa5 0x80

(A 4-gigabyte disk)

15-410, F'068

Shredding Disks

8 partitions:

size offset fstype [fsize bsize bps/cpg]

 a: 131072 0 4.2BSD 2048 16384 101 # (Cyl. 0 - 16*)

 b: 393216 131072 swap # (Cyl. 16*- 65*)

 c: 6773760 0 unused 0 0 # (Cyl. 0 - 839)

 e: 65536 524288 4.2BSD 2048 16384 104 # (Cyl. 65*- 73*)

 f: 6183936 589824 4.2BSD 2048 16384 89 # (Cyl. 73*- 839*)

Filesystem 1K-blocks Used Avail Capacity Mounted on

/dev/ad0s2a 64462 55928 3378 94% /

/dev/ad0s2f 3043806 2608458 191844 93% /usr

/dev/ad0s2e 32206 7496 22134 25% /var

procfs 4 4 0 100% /proc

(FreeBSD 4.7 on ThinkPad 560X)

15-410, F'069

Disk Structures

Boot area (first block/track/cylinder)Boot area (first block/track/cylinder)
� Interpreted by hardware bootstrap (“BIOS”)
� May include partition table

File system control blockFile system control block
� Key parameters: #blocks, metadata layout
� Unix: “superblock”

““ File control block” (Unix: “inode”)File control block” (Unix: “inode”)
� ownership/permissions
� data location

Possibly a free-space map as wellPossibly a free-space map as well

15-410, F'0610

Memory Structures

In-memory partition tablesIn-memory partition tables
� Sanity check file system I/O in correct partition

Cached directory informationCached directory information

System-wide open-file tableSystem-wide open-file table
� In-memory file control blocks

Process open-file tablesProcess open-file tables
� Open mode (read/write/append/...)
� “Cursor” (read/write position)

15-410, F'0611

VFS layer

GoalGoal
� Allow one machine to use multiple file system types

� Unix FFS
� MS-DOS FAT
� CD-ROM ISO9660
� Remote/distributed: NFS/AFS

� Standard system calls should work transparently

SolutionSolution
� Insert a level of indirection!

15-410, F'0612

Single File System

n = read(fd, buf, size)

INT 54

sys_read(fd, buf, len)

rdblk(dev, N)sleep() wakeup()

namei() iget() iput()

startIDE() IDEintr()

15-410, F'0613

VFS “Virtualization”

n = read(fd, buf, size)

INT 54

iget() iput()

vfs_read()

ufs_read() procfs_read()

procfs_domem()

namei()

ufs_lookup()

15-410, F'0614

VFS layer – file system operations

These operate on file These operate on file systemssystems , not individual files, not individual files

struct vfsops {

 char *name;

 int (*vfs_mount)();

 int (*vfs_statfs)();

 int (*vfs_vget)();

 int (*vfs_unmount)();

 ...

}

15-410, F'0615

VFS layer – file operations

Each VFS provides an array of per-file methodsEach VFS provides an array of per-file methods
� VOP_LOOKUP(vnode, new_vnode, name)
� VOP_CREATE(vnode, new_vnode, name, attributes)
� VOP_OPEN(vnode, mode, credentials, process)
� VOP_READ(vnode, uio, readwrite, credentials)

Operating system provides fs-independent codeOperating system provides fs-independent code
� Validating system call parameters
� Moving data from/to user memory
� Thread sleep/wakeup
� Caches (data blocks, name � vnode mappings)

15-410, F'0616

Directories

Old: one namei() Old: one namei() �� VFS: fs-provided vnode method VFS: fs-provided vnode method
� vnode2 = VOP_LOOKUP(vnode1, name)

Traditional Unix FFS directoriesTraditional Unix FFS directories
� List of (name,inode #) - not sorted!
� Names are variable-length
� Lookup is linear

� How long does it take to delete N files?

Common alternative: hash-table directoriesCommon alternative: hash-table directories

15-410, F'0617

Allocation / Mapping

Allocation problemAllocation problem
� Where do I put the next block of this file?

� “Near the previous block” is not a bad idea
� Beyond that, it gets complicated

Mapping problemMapping problem
� Where was block 32 of this file previously put?
� Similar to virtual memory

� Multiple large “address spaces” specific to each file
� Only one underlying “address space” of blocks
� Source address space may be sparse!

15-410, F'0618

Allocation / Mapping

ContiguousContiguous

LinkedLinked

FATFAT

IndexedIndexed
Linked

Multi-level

Unix (index tree)

15-410, F'0619

Allocation – Contiguous

ApproachApproach
� File location defined as (start, length)

MotivationMotivation
� Sequential disk accesses are cheap
� Bookkeeping is easy

IssuesIssues
� Dynamic storage allocation (fragmentation, compacti on)
� Must pre-declare file size at creation
� This should sound familiar

15-410, F'0620

Allocation – Linked

ApproachApproach
� File location defined as (start)
� Each disk block contains pointer to next block

MotivationMotivation
� Avoids fragmentation problems
� Allows file growth

Issues?Issues?

15-410, F'0621

Allocation – Linked

IssuesIssues
� 508-byte blocks don't match memory pages
� In general, one seek per block read/written - slow!
� Very hard to access file blocks at random

� lseek(fd, 37 * 1024, SEEK_SET);

BenefitBenefit
� Can recover files even if directories destroyed

Common modificationCommon modification
� Link multi-block clusters, not blocks

15-410, F'0622

Allocation – FAT

Used by MS-DOS, OS/2, WindowsUsed by MS-DOS, OS/2, Windows
� Digital cameras, GPS receivers, printers, PalmOS, . ..

Semantically same as linked allocationSemantically same as linked allocation
Next-block links stored “out of band” in a table

� Result: nice 512-byte sectors for data

Table at start of diskTable at start of disk
� Next-block pointer array
� Indexed by block number
� Next=0 means “free”

15-410, F'0623

Allocation – FAT

-1

-1
0
-1
3

5
2
7

hello.jav

 dir. c

0

1

 sys.ini 4

15-410, F'0624

Allocation - FAT

-1

-1
0
-1
3

5
2
7

hello.jav

 dir. c

0

1

 sys.ini 4

15-410, F'0625

Allocation - FAT

-1

-1
0
-1
3

5
2
7

hello.jav

 dir. c

0

1

 sys.ini 4

15-410, F'0626

Allocation - FAT

-1

-1
0
-1
3

5
2
7

hello.jav

 dir. c

0

1

 sys.ini 4

hello.jav: 0, 7

15-410, F'0627

Allocation – FAT

IssuesIssues
� Damage to FAT scrambles entire file system

� Solution: backup FAT
� Generally two seeks per block read/write

� Seek to FAT, read, seek to actual block (repeat)
� Unless FAT can be cached well in RAM

� Still somewhat hard to access random file blocks
� Linear time to walk through FAT

� FAT may be a “hot spot” (everybody needs to access it)
� Lots of FAT updates (near beginning of disk)

� Even if files being modified are far away

15-410, F'0628

Allocation – Indexed

MotivationMotivation
� Avoid fragmentation

problems
� Allow file growth
� Improve random access

ApproachApproach
� Per-file block array

3001

-1
-1
-1

3002

101
100
99

-1

-1
-1
-1

6002

-1
-1

3004

15-410, F'0629

Allocation – Indexed

Allows “holes”Allows “holes”
� foo.c is sequential
� foo.db, blocks 1..3 � -1

� logically “blank”

““ sparse allocation”sparse allocation”
� a.k.a. “holes”
� read() returns nulls
� write() requires alloc
� file “size” � file “size”

� ls -l index of last byte
� ls -s number of blocks

3001

-1
-1
-1

3002

101
100
99

-1

-1
-1
-1

6002

-1
-1

3004
foo.c foo.db

15-410, F'0630

Allocation – Indexed

How big should index block be?How big should index block be?
� Too small: limits file size
� Too big: lots of wasted pointers

Combining index blocksCombining index blocks
� Linked
� Multi-level
� What Unix actually does

15-410, F'0631

Linked Index Blocks

Last pointer indicates Last pointer indicates
next index blocknext index block

SimpleSimple

Access is not-so-randomAccess is not-so-random
� O(n/c) is still O(n)
� O(n) disk transfers

3001

45789
10460
10459
3002

101
100
99

-1

-1
-1
-1
-1

10463
10462
10461

15-410, F'0632

Multi-Level Index Blocks

Index blocks of index Index blocks of index
blocksblocks

Does this look familiar?Does this look familiar?

Allows Allows bigbig holes holes

10461
10460
10459
3002
3001
101
100
99

-1
-1

9988
9987

15-410, F'0633

Unix Index Blocks

IntuitionIntuition
� Many files are small

� Length = 0, length = 1, length < 80, ...
� Some files are huge (3 gigabytes)

““ Clever heuristic” in Unix FFS inodeClever heuristic” in Unix FFS inode
� inode struct contains 12 “direct” block pointers

� 12 block numbers * 8 KB/block = 96 KB
� Availability is “free” - must read inode to open() file anyway

� inode struct also contains 3 indirect block pointer s
� single-indirect, double-indirect, triple-indirect

15-410, F'0634

Unix Index Blocks

106
105

501
502

102
101

16
15

18
17

500
100

1000 104
103

20
19

22
21

24
23

26
25

28
27

30
29

32
31

15-410, F'0635

Unix Index Blocks

16
15

18
17

-1
-1

-1

“Direct” block #s

Indirect pointer
Double-indirect
Triple-indirect

File stored at 15..18

15-410, F'0636

Unix Index Blocks

16
15

18
17

-1
100

-1

20
19

15-410, F'0637

Unix Index Blocks

102
101

16
15

18
17

500
100

-1

20
19

22
21

24
23

15-410, F'0638

Unix Index Blocks

106
105

501
502

102
101

16
15

18
17

500
100

1000 104
103

20
19

22
21

24
23

26
25

28
27

30
29

32
31

Triple indirect can address >> 2 32 bytes

15-410, F'0639

Tracking Free Space

Bit-vectorBit-vector
� 1 bit per block: boolean “free”
� Check each word vs. 0
� Use “first bit set” instruction
� Text example

� 1.3 GB disk, 512 B sectors: 332 KB bit vector

Need to keep (much of) it in RAMNeed to keep (much of) it in RAM

15-410, F'0640

Tracking Free Space

Linked list?Linked list?
� Superblock points to first free block
� Each free block points to next

Cost to allocate N blocks is linearCost to allocate N blocks is linear
� Free block can point to multiple free blocks

� 512 bytes = 128 (4-byte) block numbers
� FAT approach provides free-block list “for free”

Keep free-Keep free- extentextent lists lists
� (block,sequential-block-count)

15-410, F'0641

Unified Buffer Cache

Traditional two-cache approachTraditional two-cache approach
� Page cache, file-system cache often totally indepen dent

� Page cache chunks according to hardware page size
� File cache chunks according to “file system block” size
� Different code, different RAM pools

� How much RAM to devote to each one?

ObservationObservation
� Why not have just one cache?

� Mix automatically varies according to load
» “cc” wants more disk cache
» Firefox wants more VM cache

15-410, F'0642

Unified Buffer Cache - Warning!

““ Virtual memory architecture in SunOS”Virtual memory architecture in SunOS”
Gingell, Moran, & Shannon

USENIX 1987 Summer Conference
“The work has consumed approximately four man-years of

effort over a year and a half of real time. A surpr isingly large
amount of effort has been drained by efforts to int erpose the
VM system as the logical cache manager for the file
systems…”

15-410, F'0643

Cache tricks

Read-aheadRead-ahead
for (i = 0; i < filesize; ++i)
 putc(getc(infile), outfile);

� System observes sequential reads
� File block 0, 1, 2, ...
� Can pipeline reads to overlap “computation”, read l atency

» Request for block 2 triggers disk read of block 3

Free-behindFree-behind
� Discard buffer from cache when next is requested
� Good for large files
� “Anti-LRU”

15-410, F'0644

Recovery

System crash...now what?System crash...now what?
� Some RAM contents were lost
� Free-space list on disk may be wrong
� Scan file system

� Check invariants
» Unreferenced files
» Double-allocated blocks
» Unallocated blocks

� Fix problems
» Expert user???

Modern approachModern approach
� “Journal” changes (see upcoming Transactions lectur e)

15-410, F'0645

Backups

Incremental approachIncremental approach
� Monthly: dump entire file system
� Weekly: dump changes since last monthly
� Daily: dump changes since last weekly

Merge approach - www.teradactyl.comMerge approach - www.teradactyl.com
� Collect changes since yesterday

� Scan file system by modification time
� Two tape drives merge yesterday's tape, today's del ta

15-410, F'0646

Summary

Block-mapping problemBlock-mapping problem
� Similar to virtual-to-physical mapping for memory
� Large, often-sparse “address” spaces

� “Holes” not the common case, but not impossible
� Map any “logical address” to any “physical address”
� Key difference: file maps often don't fit in memory

““ Insert a level of indirection”Insert a level of indirection”
� Multiple file system types on one machine
� Grow your block-allocation map
� ...

15-410, F'0647

Further Reading

JournalingJournaling
� Prabhakaran et al., Analysis and Evolution of Journ aling

File Systems (USENIX 2005)

Something cool which isn't journalingSomething cool which isn't journaling
� McKusick & Ganger: “Soft Updates: A Technique for

Eliminating Most Synchronous Writes in the Fast
Filesystem” (USENIX 1999)

Both papers appear in the “filesystem reliability” Both papers appear in the “filesystem reliability”
book report paper trackbook report paper track

