
15-410, F’081

Scheduling
Oct 20, 2008

Roger DannenbergRoger Dannenberg
Dave Dave EckhardtEckhardt

15-410
“...Everything old is new again...”

15-410, F’082

Outline

Chapter 5: SchedulingChapter 5: Scheduling
 Scheduling-people/textbook terminology note

 “Waiting time” means “time spent runnable but stuck in a
scheduler queue”

» Not “time waiting for an event to awaken you”
 “Task” means “something a scheduler schedules” (we say

“thread” or sometimes “runnable”)

15-410, F’083

CPU-I/O Cycle

ProcessProcess view: 2 states view: 2 states
 Running
 Blocked on I/O
Life Cycle:

 I/O (loading executable), CPU, I/O, CPU, .., CPU (exit())

SystemSystem view view
 Running
 Blocked on I/O
 Runnable (i.e. Waiting) – not enough processors right now

Running Running ⇒⇒ blocked mostly depends on program blocked mostly depends on program
 How long do processes run before blocking?

15-410, F’084

CPU Burst Lengths

OverallOverall
 Exponential fall-off in CPU burst length

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

100

15-410, F’085

CPU Burst Lengths

““CPU-boundCPU-bound”” program program
 Batch job
 Long CPU bursts

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

100

15-410, F’086

CPU Burst Lengths

““I/O-boundI/O-bound”” program program
 Copy, Data acquisition, ...
 Tiny CPU bursts between system calls

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

100

15-410, F’087

Preemptive?

Four opportunities to scheduleFour opportunities to schedule
 A running process waits (I/O, child, ...)
 A running process exits
 A blocked process becomes runnable (I/O done)
 Other interrupt (clock, page fault)

Multitasking typesMultitasking types
 Fully Preemptive: All four cause scheduling
 “Cooperative”: only first two

15-410, F’088

Preemptive kernel?

Preemptive Preemptive multitaskingmultitasking
 All four cases cause context switch

Preemptive Preemptive kernelkernel
 All four cases cause context switch in kernel mode
 This is a goal of Project 3

 System calls: interrupt disabling only when really necessary
 Clock interrupts should suspend system call execution

» So fork() should appear atomic, but not execute that way

15-410, F’089

CPU Scheduler

Invoked when CPU becomes idle and/or time passesInvoked when CPU becomes idle and/or time passes
 Current task blocks
 Clock interrupt

Select next taskSelect next task
 Quickly
 PCB's in: FIFO, priority queue, tree, ...

Switch (using Switch (using ““dispatcherdispatcher””))
 Your term may vary

15-410, F’0810

Dispatcher

Set down running taskSet down running task
 Save register state
 Update CPU usage information
 Store PCB in “run queue”

Pick up designated taskPick up designated task
 Activate new task's memory

 Protection, mapping
 Restore register state
 “Return” to whatever the task was previously doing

15-410, F’0811

Consider…

Who goes first? Last?Who goes first? Last?
Now who goes first? Last?Now who goes first? Last?
Does this change things?Does this change things?

15-410, F’0812

Scheduling Criteria

System administrator viewSystem administrator view
 Maximize/trade off

 CPU utilization (“busy-ness”)
 Throughput (“jobs per second”)

Process viewProcess view
 Minimize

 Turnaround time (everything)
 Waiting time (runnable but not running)

User view (interactive processes)User view (interactive processes)
 Minimize response time (input/output latency)

15-410, F’0813

Algorithms

Don't try these at homeDon't try these at home
 FCFS
 SJF
 Priority

ReasonableReasonable
 Round-Robin
 Multi-level (plus feedback)

Multiprocessor, real-timeMultiprocessor, real-time

15-410, F’0814

FCFS- First Come, First Served

Basic ideaBasic idea
 Run task until it relinquishes CPU
 When runnable, place at end of FIFO queue

Waiting time Waiting time veryvery dependent on mix dependent on mix
 Some processes run briefly, some much longer

““Convoy effectConvoy effect””
 N tasks each make 1 I/O request, stall (e.g., file copy)
 1 task executes very long CPU burst

 All I/O tasks become runnable during this time
 Lather, rinse, repeat

 Result: N “I/O-bound tasks” can't keep I/O devices busy!

15-410, F’0815

SJF- Shortest Job First

Basic ideaBasic idea
 Choose task with shortest next CPU burst
 Will give up CPU soonest, be “nicest” to other tasks
 Provably “optimal”

 Minimizes average waiting time across tasks
 Practically impossible (oh, well)

 Could predict next burst length...
» Text suggests averaging recent burst lengths
» Does not present evaluation (Why not? Hmm...)

15-410, F’0816

Priority

Basic ideaBasic idea
 Choose “most important” waiting task

 (Nomenclature: does “high priority” mean p=0 or p=255?)

Priority assignmentPriority assignment
 Static: fixed property (engineered?)
 Dynamic: function of task behavior

Big problem: Big problem: StarvationStarvation
 “Most important” task gets to run often
 “Least important “ task may never run
 Possible hack: priority “aging”

15-410, F’0817

Round-Robin

Basic ideaBasic idea
 Run each task for a fixed “time quantum”
 When quantum expires, append to FIFO queue

““FairFair””
 But not “provably optimal”

Choosing quantum lengthChoosing quantum length
 Infinite (until process does I/O) = FCFS
 Infinitesimal (1 instruction) = “Processor sharing”

 A technical term used by theory folks
 Balance “fairness” vs. context-switch costs

15-410, F’0818

True “Processor Sharing”

CDC Peripheral ProcessorsCDC Peripheral Processors
Memory latencyMemory latency

 Long, fixed constant
 Every instruction has a

memory operand

Solution: round robinSolution: round robin
 Quantum = 1 instruction

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F’0819

True “Processor Sharing”

CDC Peripheral ProcessorsCDC Peripheral Processors
Memory latencyMemory latency

 Long, fixed constant
 Every instruction has a

memory operand

Solution: round robinSolution: round robin
 Quantum = 1 instruction
 One “process” running
 N-1 “processes” waiting

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F’0820

True “Processor Sharing”

Each instructionEach instruction
 “Brief” computation
 One load or one store

 Sleeps process N cycles

Steady stateSteady state
 Run when you're ready
 Ready when it's your turn

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F’0821

Everything Old Is New Again

Intel Intel ““hyperthreadinghyperthreading””
 N register sets
 M functional units
 Switch on long-running

operations
 Sharing less regular
 Sharing illusion more lumpy

 Good for some application
mixes

 Awful for others
 “Hyperthreading Hurts Server

Performance, Say Developers”

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F’0822

Multi-level Queue

N independent process queuesN independent process queues
 One per priority
 Algorithm per-queue

Priority 0 P1 P7

Priority 1 P2 P9 P3

Batch P0 P4

R. Robin

R. Robin

FCFS

15-410, F’0823

Multi-level Queue

Inter-queue scheduling?Inter-queue scheduling?
 Strict priority

 Pri 0 runs before Pri 1, Pri 1 runs before batch – every time
 Time slicing (e.g., weighted round-robin)

 Pri 0 gets 2 slices
 Pri 1 gets 1 slice
 Batch gets 1 slice

15-410, F’0824

Multi-level Feedback Queue

N queues, different quantaN queues, different quanta
Block/sleep before quantum expires?Block/sleep before quantum expires?

 Added to end of your queue (“good runnable”)

Exhaust your quantum?Exhaust your quantum?
 Demoted to slower queue (“bad runnable!”)

 Lower priority, typically longer quantum

Can you be promoted back up?Can you be promoted back up?
 Maybe I/O promotes you
 Maybe you “age” upward

Popular Popular ““time-sharingtime-sharing”” scheduler scheduler

15-410, F’0825

Multiprocessor Scheduling

Common assumptionsCommon assumptions
 Homogeneous processors (same speed)
 Uniform memory access (UMA)

Goal: Load sharing / Load balancingGoal: Load sharing / Load balancing
 “Easy”: single global ready queue – no false idleness

But: But: ““Processor AffinityProcessor Affinity””
 Some processor may be more desirable or necessary

» Special I/O device
» Fast thread switch
» 1/Nth of memory may be faster

15-410, F’0826

Multiprocessor Scheduling

Asymmetric multiprocessingAsymmetric multiprocessing
 Also known as “master/slave”
 One processor is “special”

 Executes all kernel-mode instructions
 Schedules other processors

 “Special” aka “bottleneck”

Symmetric multiprocessing - Symmetric multiprocessing - ““SMPSMP””
 “Gold standard”
 Tricky

15-410, F’0827

Scheduler Evaluation
Approaches
““Deterministic Deterministic modelingmodeling””

 aka “hand execution”

Queueing Queueing theorytheory
 Often gives fast and useful approximations
 Math gets big fast
 Math sensitive to assumptions

» May be unrealistic (aka “wrong”)

SimulationSimulation
 Workload model or trace-driven
 GIGO hazard (either way)

15-410, F’0828

Real-Time Scheduling
WhatWhat’’s a computation worth?s a computation worth?

Real Time: No (extra) value if early (or in some cases,Real Time: No (extra) value if early (or in some cases,
curve just falls off fast)curve just falls off fast)

time →

time → time → time →

15-410, F’0829

“Hard Real Time”: Many Definitions
Very fast response time -- e.g 10µsVery fast response time -- e.g 10µs

No value if results are late:No value if results are late:

Very costly if late:Very costly if late:

Never lateNever late

Note: literature is unclear about the Note: literature is unclear about the ““realreal”” definition. definition.

15-410, F’0830

Hard Real-Time Scheduling
 Designers must describe task requirements

 Worst-case execution time of instruction sequences
 “Prove” system response time

 Argument or automatic verifier
 Cannot use indeterminate-time technologies

 Disks?
 Networks?

 Solutions often involve
 Simplified designs
 Over-engineered systems
 Dedicated hardware
 Specialized OS

15-410, F’0831

More Definitions: “Soft Real Time”
Computation still has value after deadlineComputation still has value after deadline

 Think User Interface
 Many control systems

 (if the fly-by-wire system doesn’t move the elevator within 50ms,
probably still good to to it within 100ms)

Performance is not critical (no one will die)Performance is not critical (no one will die)
 YouTube video
 Skype

 Note that late packets cause audio drop-out.
 CD-R writing software

 Resulting CD can be corrupted

15-410, F’0832

Soft Real-Time Scheduling
Now commonly supported in generic OSNow commonly supported in generic OS

 POSIX real-time extensions for Unix

Priority-based SchedulerPriority-based Scheduler
Preemptible Preemptible kernel implementationkernel implementation

15-410, F’0833

Summary

Round-robin is ok for simple casesRound-robin is ok for simple cases
 Certainly 80% of the conceptual weight
 Certainly good enough for P3

 Speaking of P3...
» Understand preemption, don't evade it

““RealReal”” systems systems
 Some multi-level feedback
 Probably some soft real-time

Real-Time Systems ConceptsReal-Time Systems Concepts
 Terminology: soft, hard, deadline
 Priority Inversion (see next lecture)

