
15-410, F'081

Virtual Memory #2
Oct. 1, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L16_VM2

15-410
“...The mysterious TLB...”

15-410, F'082

Synchronization

Reminder: exam conflict mailReminder: exam conflict mail
� Please answer promptly

15-410, F'083

Last Time

Mapping problem: logical vs. physical addressesMapping problem: logical vs. physical addresses

Contiguous memory mapping (base, limit)Contiguous memory mapping (base, limit)

Swapping – taking turns in memorySwapping – taking turns in memory

PagingPaging
� Array mapping page numbers to frame numbers
� Observation: typical table is sparsely occupied
� Response: some sparse data structure (e.g., 2-level array)

15-410, F'084

Swapping

Multiple user processesMultiple user processes
� Sum of memory demands > system memory
� Goal: Allow each process 100% of system memory

Take turnsTake turns
� Temporarily evict process(es) to disk
� “Swap daemon” shuffles process in & out
� Can take seconds per process
� Creates external fragmentation problem

15-410, F'085

External Fragmentation (“Holes”)

Process 3

Process 4

Process 1

OS Kernel

Process 2

Process 3

Process 4Process 1

OS Kernel

Process 2

15-410, F'086

Benefits of Paging

Process growth problemProcess growth problem
� Any process can use any free frame for any purpose

Fragmentation compaction problemFragmentation compaction problem
� Process doesn't need to be contiguous

Long delay to swap a whole processLong delay to swap a whole process
� Swap part of the process instead!

15-410, F'087

Partial Residence

P0 code 0

OS Kernel

[free]
P0 data 0
P1 data 0
P1 stack 0
P0 stack 0
P1 data 1

[free]

P0 code 0
P0 code 1
P0 data 0
P0 stack 0

P1 code 0
P1 data 0
P1 data 1
P1 stack 0

15-410, F'088

Page Table Entry (PTE) flags

Protection bits – set by OSProtection bits – set by OS
� Read/write/execute

Valid/Present bit – set by OSValid/Present bit – set by OS
� Frame pointer is valid, no need to fault

Dirty bitDirty bit
� Hardware sets 0 � 1 when data stored into page
� OS sets 1 � 0 when page has been written to disk

Reference bitReference bit
� Hardware sets 0 � 1 on any data access to page
� OS uses for page eviction (later)

15-410, F'089

Outline

The mysterious TLBThe mysterious TLB

Partial memory residence (demand paging) in actionPartial memory residence (demand paging) in action

The task of the page fault handlerThe task of the page fault handler

15-410, F'0810

Double Trouble? Triple Trouble?

Program requests memory accessProgram requests memory access

Processor makes Processor makes twotwo memory accesses! memory accesses!
� Split address into page number, intra-page offset
� Add to page table base register
� Fetch page table entry (PTE) from memory
� Add frame address, intra-page offset
� Fetch data from memory

Can be worse than that...Can be worse than that...
� x86 Page-Directory/Page-Table

� Three physical accesses per virtual access!
� x86-64 has a four-level page-mapping system

15-410, F'0811

Translation Lookaside Buffer (TLB)

ProblemProblem
� Cannot afford double/triple/... memory latency

Observation - “locality of reference”Observation - “locality of reference”
� Program often accesses “nearby” memory
� Next instruction often on same page as current

instruction
� Next byte of string often on same page as current b yte
� (“Array good, linked list bad”)

SolutionSolution
� Page-map hardware caches virtual-to-physical mappings

� Small, fast on-chip memory
� “Free” in comparison to slow off-chip memory

15-410, F'0812

Simplest Possible TLB

ApproachApproach
� Remember the most-recent virtual-to-physical transl ation

� (obtained from, e.g., Page Directory + Page Table)
� See if next memory access is to same page

� If so, skip PD/PT memory traffic; use same frame
� 3X speedup, cost is two 20-bit registers

» “Great work if you can get it”

15-410, F'0813

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

15-410, F'0814

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

15-410, F'0815

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

f34802A5

15-410, F'0816

TLB “Hit”

Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
........

f08
f07
....

Page
Directory

f34802A5

802A5

15-410, F'0817

TLB “Miss”

Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
........

f08
f07
....

Page
Directory

f34802A5

802A4

15-410, F'0818

TLB “Refill”

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

f25802A4

15-410, F'0819

Simplest Possible TLB

Can you think of a “pathological” instruction?Can you think of a “pathological” instruction?
� What would it take to “break” a 1-entry TLB?

How many TLB entries do we need, anyway?How many TLB entries do we need, anyway?

15-410, F'0820

TLB vs. Context Switch

After we've been running a while...After we've been running a while...
� ...the TLB is “hot” - full of page � frame translations

Interrupt!Interrupt!
� Some device is done...
� ...should switch to some other task...
� ...what are the parts of context switch, again?

� General-purpose registers
� ...?

15-410, F'0821

TLB vs. Context Switch

After we've been running a while...After we've been running a while...
� ...the TLB is “hot” - full of page �frame translations

Interrupt!Interrupt!
� Some device is done...
� ...should switch to some other task...
� ...what are the parts of context switch, again?

� General-purpose registers
� Page Table Base Register
� ...?

15-410, F'0822

TLB vs. Context Switch

After we've been running a while...After we've been running a while...
� ...the TLB is “hot” - full of page �frame translations

Interrupt!Interrupt!
� Some device is done...
� ...should switch to some other task...
� ...what are the parts of context switch, again?

� General-purpose registers
� Page Table Base Register
� Entire contents of TLB!!

» (why?)

15-410, F'0823

x86 TLB Flush

1. Declare new page directory (set %cr3)1. Declare new page directory (set %cr3)
� Clears every entry in TLB (whoosh!)

� Footnote: doesn't clear “global” pages...
» Which pages might be “global”?

2. INVLPG instruction2. INVLPG instruction
� Invalidates TLB entry of one specific page
� Is that more efficient or less?

15-410, F'0824

x86 Type Theory – Final Version

Instruction Instruction �� segment selector segment selector
� [PUSHL specifies selector in %SS]

Process Process �� (selector (selector �� (base,limit)) (base,limit))
� [Global,Local Descriptor Tables]

Segment base, address Segment base, address �� linear address linear address

TLB: linear address TLB: linear address �� physical address, or... physical address, or...

Process Process �� (linear address high (linear address high �� page table) page table)

Page Table: linear address middle Page Table: linear address middle �� frame address frame address

Memory: frame address, offset Memory: frame address, offset ��

15-410, F'0825

Is there another way?

That seems That seems really complicatedreally complicated
� Is that hardware monster really optimal for every O S and

program mix?
� “The only way to win is not to play?”

Is there another way?Is there another way?
� Could we have no page tables?
� How would the hardware map virtual to physical???

15-410, F'0826

Software-loaded TLBs

ReasoningReasoning
� We need a TLB “for performance reasons”
� OS defines each process's memory structure

� Which memory regions, permissions
� Lots of processes share frames of /bin/bash!

� Hardware page-mapping unit imposes its own ideas
� Why impose a semantic middle-man?

ApproachApproach
� TLB contains subset of mappings
� OS knows the rest
� TLB miss generates special trap
� OS quickly fills in correct v �p mapping

15-410, F'0827

Software TLB features

Mapping entries can be computed many waysMapping entries can be computed many ways
� Imagine a system with one process memory size

� TLB miss becomes a matter of arithmetic

Mapping entries can be “locked” in TLBMapping entries can be “locked” in TLB
� Good idea to lock the TLB-miss handler's TLB entry. ..
� Great for real-time systems

Further readingFurther reading
� http://yarchive.net/comp/software_tlb.html

Software TLBsSoftware TLBs
� PowerPC 603, 400-series (but NOT 7xx/9xx)

15-410, F'0828

TLB vs. Project 3

x86 has a nice, automatic TLBx86 has a nice, automatic TLB
� Hardware page-mapper fills it for you
� Activating new page directory flushes TLB automatic ally
� What could be easier?

It's not It's not totallytotally automatic automatic
� Something “natural” in your kernel may confuse it.. .

TLB debugging in SimicsTLB debugging in Simics
� logical-to-physical (l2p) command
� cpu0_tlb.info, cpu0_tlb.status

� More bits “trying to tell you something”
� [INVLPG issues with Simics 1. Simics 2, 3 seem ok]

15-410, F'0829

Partial Memory Residence

Error-handling code not used by every runError-handling code not used by every run
� No need for it to occupy memory for entire duration ...

Tables may be allocated larger than usedTables may be allocated larger than used
player players[MAX_PLAYERS];

Computer can run Computer can run veryvery large programs large programs
� Much larger than physical memory
� As long as “active” footprint fits in RAM
� Swapping can't do this

Programs can launch fasterPrograms can launch faster
� Needn't load whole program before running

15-410, F'0830

“Virtual Memory Approach”

Use RAM frames as a cache for the set of all pagesUse RAM frames as a cache for the set of all pages
� Some pages are fast to access (in a RAM frame)
� Some pages are slow to access (in a disk “frame”)

Page tables indicate which pages are “resident”Page tables indicate which pages are “resident”
� Non-resident pages have “present=0” in page table e ntry
� Memory access referring to page generates page fault

� Hardware invokes page-fault exception handler

15-410, F'0831

Page fault – Reasons, Responses

Address is invalid/illegal – deliver Address is invalid/illegal – deliver software exceptionsoftware exception
� Unix – SIGSEGV
� Mach – deliver message to thread's exception port
� 15-410 – kill thread

Process is growing stack – give it a new frameProcess is growing stack – give it a new frame

““ Cache misses” - fetch from diskCache misses” - fetch from disk
� Where on disk, exactly?

15-410, F'0832

Satisfying Page Faults

code

data

bss

stack

Filesystem

Paging Space

Free-frame pool

15-410, F'0833

Page fault story - 1

Process issues memory referenceProcess issues memory reference
� (TLB: miss)
� PT: “not present”

TrapTrap to OS kernel! to OS kernel!
� Processor dumps trap frame onto kernel stack (x86)
� Transfers via “page fault” interrupt descriptor tab le entry
� Runs trap handler

15-410, F'0834

Page fault story – 2

Classify fault addressClassify fault address
� Illegal address � deliver an ouch, else...

Code/rodata region of executable?Code/rodata region of executable?
� Determine which sector of executable file
� Launch read() from file into an unused frame

Previously resident r/w data, paged outPreviously resident r/w data, paged out
� “somewhere on the paging partition”
� Queue disk read into an unused frame

First use of bss/stack pageFirst use of bss/stack page
� Allocate a frame full of zeroes, insert into PT

15-410, F'0835

Page fault story – 3

Put process to sleep (for most cases)Put process to sleep (for most cases)
� Switch to running another

Handle I/O-complete interruptHandle I/O-complete interrupt
� Fill in PTE (present = 1)
� Mark process runnable

Restore registers, switch page tableRestore registers, switch page table
� Faulting instruction re-started transparently
� Single instruction may fault more than once!

15-410, F'0836

Memory Regions vs. Page Tables

What's a poor page fault handler to do?What's a poor page fault handler to do?
� Kill process?
� Copy page, mark read-write?
� Fetch page from file? Which? Where?

Page table not a good data structurePage table not a good data structure
� Format defined by hardware
� Per-page nature is repetitive
� Not enough bits to encode OS metadata

� Disk sector address can be > 32 bits

15-410, F'0837

Dual-view Memory Model

LogicalLogical
� Process memory is a list of regions
� “Holes” between regions are illegal addresses
� Per-region methods

� fault(), evict(), unmap()

PhysicalPhysical
� Process memory is a list of pages
� Faults delegated to per-region methods
� Many “invalid” pages can be made valid

� But sometimes a region fault handler returns “error ”
» Handle as with “hole” case above

15-410, F'0838

Page-fault story (for real)

Examine fault addressExamine fault address

Look up: address Look up: address �� region region

region->fault(addr, access_mode)region->fault(addr, access_mode)
� Quickly fix up problem
� Or start fix, put process to sleep, run scheduler

15-410, F'0839

Summary

The mysterious TLBThe mysterious TLB
� No longer mysterious

Process address spaceProcess address space
� Logical: list of regions
� Hardware: list of pages

Fault handler is Fault handler is complicatedcomplicated
� Page-in, copy-on-write, zero-fill, ...

