15-410

“...We are Computer Scientists!...”

Virtual Memory #1
Sep. 29, 2008

Dave Eckhardt
Roger Dannenberg

L15 VML

15-410, F'08

Outline

Text
= Chapters 8, 9

The Problem: logical vs. physical
Contiguous memory mapping
Fragmentation

Paging
= Type theory
= A sparse map

15-410, F'08

Logical vs. Physical

It's all about address spaces

= Generally a complex issue
= |Pv4 = |IPv6 is mainly about address space exhaustion

Review
= Combining .0's changes addresses
= But what about two programs?

15-410, F'08

Every .0 uses same address
space

bss

dat a
dat a

code code

15-410, F'08

Linker Combines .0's, Changes
Addresses

bss

bss

dat a
dat a

code

code

15-410, F'08

What About Two Programs?

stack[|FFFFFO00

bss -00010300

dat a [N 00010200

code -00010000

st ack - FFFFEOOO

bss I 00010300

dat a_OOOlOlOO
code -00010000

15-410, F'08

Logical vs. Physical Addresses

Logical address

= Each program has its own address space ...
= fetch: address = data
= store: address, data = .

= ...as envisioned by programmer, compiler, linker

Physical address
= Where your program ends up in memory
= They can't all be loaded at 0x10000!

15-410, F'08

10

Reconciling Logical, Physical

Programs could take turns in memory
= Requires swapping programs out to disk
= Very slow

Could run programs at addresses other than linked
= Requires using linker to “relocate one last time” a t launch
= Done by some old mainframe OSs
= Slow, complex, or both

We are computer scientists!

15-410, F'08

11

Reconciling Logical, Physical

Programs could take turns in memory
= Requires swapping programs out to disk
= Very slow

Could run programs at addresses other than linked
= Requires using linker to “relocate one last time” a t launch
= Done by some old mainframe OSs
= Slow, complex, or both

We are computer scientists!
= Insert a level of indirection

15-410, F'08

12

Reconciling Logical, Physical

Programs could take turns in memory
= Requires swapping programs out to disk
= Very slow

Could run programs at addresses other than linked
= Requires using linker to “relocate one last time” a t launch
= Done by some old mainframe OSs
= Slow, complex, or both

We are computer scientists!
= |nsert a level of indirection
= Well, get the ECE folks to do it for us

15-410, F'08

Type Theory

Physical memory behavior
= fetch: address = data

= store: address, data = .

Process thinks of memory as...
= fetch: address = data

= store: address, data = .

Goal: each process has “its own memory”
= process-id = fetch: (address = data)
= process-id = store: (address, data = .)

What really happens

= process-id = map: (virtual-address = physical-address)

= Use “map o fetch” and “map o store”
13 15-410, F08

Simple Mapping Functions

Pl
Virtual Physical If V>8191 ERROR
Else P =1000 +V

P2
16383 25575 If V> 16383 ERROR
Else P =9192 +V
0 9192
8191 9191
0 1000 Address space =
999 999 = Base address
0 0 . Limit

14 15-410, F'08

Contiguous Memory Mapping

Processor contains two control registers
= Memory base
= Memory limit

Each memory access checks
1f V<Ilimt
P = base + V,
El se
ERROR /* what do we call this error? */

During context switch...
= Save/load user-visible registers
= Also load process's base, limit registers

15 15-410, F'08

Problems with Contiguous Allocation

How do we grow a process?
= Must increase “limit” value
= Cannot expand into another process's memory!

= Must move entire address spaces around
= Very expensive

Fragmentation
= New processes may not fit into unused memory “holes

Partial memory residence
= Must entire program be in memory at same time?

16 15-410, F'08

17

Can We Run Process 47?

Process exit creates
“holes”

New processes may bhe
too large

May require moving entire
address spaces

15-410, F'08

Term: “External Fragmentation”

Free memory is small
chunks

Doesn't fit large objects

Can “disable” lots of
memory

Can fix
= Costly “compaction”
" aka “Stop & copy” OSKernel

15-410, F'08

Term: “Internal Fragmentation”

Allocators often round up

= 8K boundary (some
power of 2!)

Some memory is wasted
inside each segment

8192 9292

Can't fix via compaction
1100

Effects often non-fatal

OS Kernd

15-410, F'08

20

Swapping

Multiple user processes
= Sum of memory demands > system memory
= Goal: Allow each process 100% of system memory

Take turns

= Temporarily evict process(es) to disk
= Not runnable
= Blocked on implicit 1/O request (e.g., “swapread”)

= “Swap daemon” shuffles process in & out

= Can take seconds per process
= Modern analogue: laptop suspend-to-disk

= Maybe we need a better plan?

15-410, F'08

21

Contiguous Allocation = Paging

Solves multiple problems
= Process growth problem
= Fragmentation compaction problem
= Long delay to swap a whole process

Approach: divide memory more finely
= Page =small region of virtual memory (2K, 4K, 8K, ...)

= Frame = small region of physical memory
= [I will get this wrong, feel free to correct me]

Key idea!!!
= Any page can map to (occupy) any frame

15-410, F'08

Per-process Page Mapping

15-410, F'08

23

Problems Solved by Paging

Process growth problem?
= Any process can use any free frame for any purpose

Fragmentation compaction problem?
= Process doesn't need to be contiguous, so don't com

Long delay to swap a whole process?
= Swap part of the process instead!

pact

15-410, F'08

Partial Residence

—>-<—

24

15-410, F'08

Data Structure Evolution

Contiguous allocation
= Each process was described by (base,limit)

Paging
= Each page described by (base,limit)?
= Pages typically one size for whole system
= Ok, each page described by (base address)

= Arbitrary page = frame mapping requires some work

= Abstract data structure: “map”
= Implemented as...

25

15-410, F'08

Data Structure Evolution

Contiguous allocation
= Each process was described by (base,limit)

Paging
= Each page described by (base,limit)?
= Pages typically one size for whole system
= Ok, each page described by (base address)

= Arbitrary page = frame mapping requires some work
= Abstract data structure: “map”
= Implemented as...
» Linked list?
» Array?
» Hash table?
» Skip list?

26

15-410, F'08

Page Table Options

Linked list

= O(n), so V= P time gets longer for large addresses!

Array
= Constant time access
= Requires (large) contiguous memory for table

Hash table

= Vaguely-constant-time access
= Not really bounded though

Splay tree
= Excellent amortized expected time
= Lots of memory reads & writes possible for one mapping
= Probably impractical
27 15-410, F'08

28

Page Table Array

Page 3
Page 2
Page 1
Page O

Page table array

15-410, F'08

29

Paging —Address Mapping

\ 4K page size =12 bits

32 -12 = 20 bits of page #

15-410, F'08

30

Paging —Address Mapping

Page table

15-410, F'08

31

Paging —Address Mapping

Page table

15-410, F'08

32

Paging —Address Mapping

Page table

15-410, F'08

33

Paging —Address Mapping

User view
= Memory is a linear array

OS view
= Each process requires N frames

Fragmentation?
= Zero external fragmentation
= [nternal fragmentation: average %2 page per region

15-410, F'08

Bookkeeping

One page table for each process

One global frame table
= Manages free frames
= (Typically) remembers who owns each frame

Context switch
= Must “activate” switched-to process's page table

34

15-410, F'08

35

Hardware Techniques

Small number of pages?
= “Page table” can be a few registers

= PDP-11, 64k address space
= 8 “pages” of 8k each —8 reqisters

Typical case
= Large page tables, live in memory
= Where?
» Processor has “Page Table Base Register” (hames
vary)

» Set during context switch

15-410, F'08

36

Double trouble?

Program requests memory access
- MOVL (%ESI), %EAX

Processor makes two memory accesses!

= Splits address into page number, intra-page offset
Adds page number to page table base register
Fetches page table entry (PTE) from memory
Concatenates frame address with intra-page offset
Fetches program's data from memory into %eax

Solution: “TLB”

= Not covered today

15-410, F'08

37

Page Table Entry Mechanics

PTE conceptual job
= Specify a frame number

15-410, F'08

38

Page Table Entry Mechanics

PTE conceptual job
= Specify a frame number

PTE flags
= Valid bit
= Not-set means access should generate an exception

= Protection
= Read/Write/Execute bits

= Dirty bit
= Set means page was written to “recently”
= Used when paging to disk (later lecture)

= Specified by OS for each page/frame

15-410, F'08

39

Page Table Structure

Problem
= Assume 4 KByte pages, 4-Byte PTEs

= Ratio: 1024:1
= 4 GByte virtual address (32 bits) = 4 MByte page table
= For each process!

15-410, F'08

40

Page Table Structure

Problem
= Assume 4 KByte pages, 4-Byte PTEs

= Ratio: 1024:1
= 4 GByte virtual address (32 bits) = 4 MByte page table
= For each process!

One Approach: Page Table Length Register (PTLR)
= (names vary)

Programs don't use entire virtual space

Restrict a process to use entries 0...N

On-chip register detects out-of-bounds reference

Allows small PTs for small processes
= (aslong as stack isn't far from data)

15-410, F'08

41

Page Table Structure

Key observation
= Each process page table isa sparse mapping

= Many pages are not backed by frames
= Address space is sparsely used
» Enormous “hole” between bottom of stack, top of hea p
» Often occupies 99% of address space!
= Some pages are on disk instead of in memory

15-410, F'08

42

Page Table Structure

Key observation
= Each process page tableisa sparse mapping

= Many pages are not backed by frames
= Address space is sparsely used
» Enormous “hole” between bottom of stack, top of hea p
» Often occupies 99% of address space!
= Some pages are on disk instead of in memory

Refining our observation

= Page tables are not randomly sparse
= Occupied by sequential memory regions
= Text, rodata, data+bss, stack

= “Sparse list of dense lists”

15-410, F'08

43

Page Table Structure

How to map “sparse list of dense lists™?

We are computer scientists!
= .72

15-410, F'08

Page Table Structure

How to map “sparse list of dense lists"?

We are computer scientists!
= |nsert a level of indirection

= Well, get the ECE folks to do it for us

Multi-level page table
= Page directory maps large chunks of address space t

= ...Page tables, which map pages to frames

O...

15-410, F'08

45

Multi-level page table

Page
Directory
Page
Tabl es

15-410, F'08

46

Multi-level page table

Page
Tabl es

Page
Directory

i

15-410, F'08

47

Multi-level page table

Page
Directory

Page
Tabl es

15-410, F'08

43

Multi-level page table

Page
Directory

Page
Tabl es

15-410, F'08

49

Multi-level page table

Page
Tabl es

15-410, F'08

50

Multi-level page table

Page
Tabl es

15-410, F'08

ol

Multi-level page table

Page
Tabl es

15-410, F'08

Sparse Mapping?

Assume 4 KByte pages, 4-byte PTEs

= Ratio: 1024:1
= 4 GByte virtual address (32 bits) = 4 MByte page table

Now assume page directory with 4-byte P DEs
= 4-megabyte page table becomes 1024 4K page tables
= Plus one 1024-entry page directory to point to them
= Result: 4 Mbyte + 4Kbyte (this is better??)

52

15-410, F'08

Sparse Mapping?

Assume 4 KByte pages, 4-byte PTEs

= Ratio: 1024:1
= 4 GByte virtual address (32 bits) = 4 MByte page table

Now assume page directory with 4-byte P DEs
= 4-megabyte page table becomes 1024 4K page tables
= Plus one 1024-entry page directory to point to them
= Result: 4 Mbyte + 4Kbyte (this is better??)

Sparse address space...
= ...means most page tables contribute nothing to map ping...
= ...would all be full of “empty” entries...
= ...S0 just use a “null pointer” in page directory i nstead.
= Result: empty 4GB address space specified by 4KB directory

53 15-410, F'08

Sparse Mapping?

Sparsely populated page directory

= Contains pointers only to non-empty page tables

Common case

= Need 2 or 3 page tables
= One or two map code, data
= One maps stack

= Page directory has 1024 slots
= Two are filled in with valid pointers
= Remainder are “not present”

Result
= 2-3 page tables
= 1 page directory
= Map entire address space with 12-16Kbyte, not 4Mbyt e

54 15-410, F'08

25

Segmentation

Physical memory is (mostly) linear

Is virtual memory linear?

= Typically a set of “regions”
= “Module” = code region + data region
= Region per stack
= Heap region

Why do regions matter?
= Natural protection boundary
= Natural sharing boundary

15-410, F'08

o6

Segmentation: Mapping

15-410, F'08

o/

Segmentation + Paging

80386 (does it all!)

= Processor address directed to one of six segments
= CS: Code Segment, DS: Data Segment
= 32-bit offset within a segment -- CS:EIP

= Descriptor table maps selector to segment descripto
= Offset fed to segment descriptor, generates linear
= Linear address fed through page directory, page tab

r
address
le

15-410, F'08

X86 Type Theory

Instruction = segment selector
= [PUSHL implicitly specifies selector in %SS]

Process = (selector = (base,limit))
= [Global,Local Descriptor Tables]

Segment, in-segment address = linear address
= CS:EIP means “EIP + base of code segment”

Process = (linear address high = page table)
= [Page Directory Base Register, page directory index ing]

Page Table: linear address middle = frame address

sgMemory: frame address + offset = ... 15410, F08

Summary

Processes emit virtual addresses
= segment-based or linear

A magic process maps virtual to physical

No, it's not magic
= Address validity verified
= Permissions checked
= Mapping may fail (trap handler)

Data structures determined by access patterns
= Most address spaces are sparsely allocated

59

15-410, F'08

60

Quote

Any problem in Computer Science can be solved by an
extra level of indirection.

-Roger Needham

15-410, F'08

