
15-410, F'081

The Thread
Sep. 10, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L07a_Thread

15-410

“Real concurrency – in which one program actually
continues to function while you call up and use
another – is more amazing but of small use to the
average person. How many programs do you have
that take more than a few seconds to perform any
task?” – NYT, 4/25/1989

15-410, F'082

Synchronization

Project 1Project 1
� By end of today...

� Console (output) should really be working
� Should have some progress for kbd, timer

» Should really have at least “solid design”
» Better to have handled one interrupt once

Write good codeWrite good code
� Console driver will be used (and extended) in P3

15-410, F'083

Book Report Goals

Some of you are going to grad. schoolSome of you are going to grad. school

Some of you are wondering about grad. schoolSome of you are wondering about grad. school

Some of you are Some of you are inin grad. school grad. school
� You should be able to read a Ph.D. dissertation

More generallyMore generally
� Looking at something in depth is different
� Not like a textbook

15-410, F'084

Book Report Goals

There's more than one way to do itThere's more than one way to do it
� But you don't have time to try all the ways in 410
� Reading about other ways is good, maybe fun

HabituationHabituation
� Long-term career development requires study

Writing skills (a little!)Writing skills (a little!)
� “Summarizing” a book in a page is tough

15-410, F'085

Book Report

Read the “handout”Read the “handout”

Browse the already-approved listBrowse the already-approved list

Pick something (soon)Pick something (soon)
� “Don't make me stop the car...”

Read a bit before you sleep at nightRead a bit before you sleep at night
� or: before you sleep in the morning
� and/or: Thanksgiving break / Spring break

Assignment recommended by previous OS students!Assignment recommended by previous OS students!
� They recommend starting early, too

15-410, F'086

Road Map

Thread lectureThread lecture

Synchronization lecturesSynchronization lectures
� Probably three

Yield lectureYield lecture

This is importantThis is important
� When you leave here, you will use threads
� Understanding threads will help you understand the

kernel

Please make sure you Please make sure you understandunderstand threads threads
� We'll try to help by assigning you P2

15-410, F'087

Outline

Textbook chaptersTextbook chapters
� Already: Chapters 1 through 3
� Today: Chapter 4 (roughly)
� Soon: Chapters 6 & 7

� Transactions (6.9) will be deferred
� Reading list on schedule page on web site

15-410, F'088

Outline

Thread = schedulable registersThread = schedulable registers
� (that's all there is)

Why threads?Why threads?

Thread flavors (ratios)Thread flavors (ratios)

(Against) cancellation(Against) cancellation

Race conditionsRace conditions
� 1 simple, 1 ouch
� Make sure you really understand this

15-410, F'089

Single-threaded Process

Stack

Code
Data
Heap

Registers

stdin

stdout

timer

15-410, F'0810

Multi-threaded Process

stdin

stdout

timer

Code
Data
Heap

Stack Registers
Stack Registers
Stack Registers

15-410, F'0811

What does that mean?

Three stacksThree stacks
� Three sets of “local variables”

Three register setsThree register sets
� Three stack pointers
� Three %eax's (etc.)

Three Three schedulable RAM mutatorsschedulable RAM mutators
� (heartfelt but partial apologies to the ML crowd)

Three potential bad interactions Three potential bad interactions
� A/B, A/C, B/C ... this pattern gets worse fast...

15-410, F'0812

Why threads?

Shared access to data structuresShared access to data structures

ResponsivenessResponsiveness

Speedup on multiprocessorsSpeedup on multiprocessors

15-410, F'0813

Shared access to data structures

Database server for multiple bank branchesDatabase server for multiple bank branches
� Verify multiple rules are followed

� Account balance
� Daily withdrawal limit

� Multi-account operations (transfer)
� Many accesses, each modifies tiny fraction of datab ase

Server for a multi-player gameServer for a multi-player game
� Many players
� Access (& update) shared world state

� Scan multiple objects
� Update one or two objects

15-410, F'0814

Shared access to data structures

Process per player?Process per player?
� Processes share objects only via system calls
� Hard to make game objects = operating system object s

Process per game object?Process per game object?
� “Scan multiple objects, update one”
� Lots of message passing between processes
� Lots of memory wasted for lots of processes
� Slow

15-410, F'0815

Shared access to data structures

ThreadThread per player per player
� Game objects inside single memory address space
� Each thread can access & update game objects
� Shared access to OS objects (files)

Thread-switch is cheapThread-switch is cheap
� Store N registers
� Load N registers

15-410, F'0816

Responsiveness

““ Cancel” button vs. decompressing large JPEGCancel” button vs. decompressing large JPEG
� Handle mouse click during 10-second process

� Map (x,y) to “cancel button” area
� Change color / animate shadow / squeak / ...
� Verify that button-release happens in button area o f screen

� ...without JPEG decompressor understanding clicks
� Actually stopping the decompressor is a separate issue

� Threads allow the user to register intent while it' s running

15-410, F'0817

Multiprocessor speedup

More CPUs can't help a single-threaded process!More CPUs can't help a single-threaded process!

PhotoShop color dither operationPhotoShop color dither operation
� Divide image into regions
� One dither thread per CPU
� Can (sometimes) get linear speedup

15-410, F'0818

Kinds of threads

User-space (N:1)User-space (N:1)

Kernel threads (1:1)Kernel threads (1:1)

Many-to-many (M :N)Many-to-many (M :N)

15-410, F'0819

User-space threads (N:1)

Internal threadingInternal threading
� Thread library adds

threads to a process
� Thread switch “just

swaps registers”
� Small piece of asm

code
� Maybe called yield()

Code
Data
Heap

Stack
Stack Registers
Stack

15-410, F'0820

User-space threads (N:1)

+ No change to operating system+ No change to operating system

- Any system call probably blocks all “threads”- Any system call probably blocks all “threads”
� “The process” makes a system call
� Kernel blocks “the process”
� (special non-blocking system calls can help)

- “Cooperative scheduling” awkward/insufficient- “Cooperative scheduling” awkward/insufficient
� Must manually insert many calls to yield()

- Cannot go faster on multiprocessor machines- Cannot go faster on multiprocessor machines

15-410, F'0821

Pure kernel threads (1:1)

OS-supported threadingOS-supported threading
� OS knows

thread/process
ownership

� Memory regions shared
& reference-counted

Code
Data
Heap

Stack Registers
Stack Registers
Stack Registers

15-410, F'0822

Pure kernel threads (1:1)

““ Every thread is sacred”Every thread is sacred”
� Kernel-managed register set
� Kernel stack for when the thread is running kernel code
� “Real” (timer-triggered) scheduling

FeaturesFeatures
+ Program runs faster on multiprocessor

+ CPU-hog threads don't get all the CPU time

- User-space libraries must be rewritten to be “thr ead safe”

- Requires more kernel memory
� 1 PCB � 1 TCB + N tCB's,
� 1 k-stack � N k-stacks

15-410, F'0823

Many-to-many (M:N)

Middle groundMiddle ground
� OS provides kernel

threads
� M user threads share N

kernel threads

Code
Data
Heap

Stack
Stack Registers
Stack Registers

15-410, F'0824

Many-to-many (M:N)

Sharing patternsSharing patterns
� Dedicated

� User thread 12 owns kernel thread 1
� Shared

� 1 kernel thread per hardware CPU
� Each kernel thread executes next runnable user thre ad

� Many variations, see text

FeaturesFeatures
� Great when all the schedulers work together as you

expected!

15-410, F'0825

(Against) Thread Cancellation

Thread cancellationThread cancellation
� We don't want the result of that computation

� (“Cancel button”)
� Two kinds – “asynchronous”, “deferred”

Asynchronous (immediate) cancellationAsynchronous (immediate) cancellation
� Stop execution now

� Run 0 more instructions
� Free stack, registers
� Poof!

� Hard to garbage-collect resources (open files, ...)
� Invalidates data structure consistency!

15-410, F'0826

(Against) Thread Cancellation

Deferred ("pretty please") cancellationDeferred ("pretty please") cancellation
� Write down “Dear Thread #314, Please go away.”
� Threads must check for cancellation
� Or define safe cancellation points

� “Any time I call close() it's ok to zap me”

The only safe way (IMHO)The only safe way (IMHO)

15-410, F'0827

Race conditions

What you thinkWhat you think
ticket = next_ticket++; /* 0 � 1 */

What really happens (in general)What really happens (in general)
ticket = temp = next_ticket; /* 0 */

++temp; /* 1, but not visible */

next_ticket = temp; /* 1 is visible */

15-410, F'0828

Murphy' s Law (of threading)

The world may The world may arbitrarily interleavearbitrarily interleave execution execution
� Multiprocessor

� N threads executing instructions at the same time
� Of course effects are interleaved!

� Uniprocessor
� Only one thread running at a time...
� But N threads runnable, timer counting down toward zero...

The world will choose the The world will choose the most painfulmost painful interleaving interleaving
� “Once chance in a million” happens every minute

15-410, F'0829

Race Condition – Your Hope

T0 T1
tkt = tmp = n_tkt; 0

++tmp; 1
n_tkt = tmp; 1

tkt = tmp = n_tkt; 1
++tmp; 2

n_tkt = tmp; 2

T0 has ticket 0, T1 has ticket 1.
next_tkt has value 2. Your boss is
happy.

15-410, F'0830

Race Condition – Your Bad Luck

T0 T1
tkt = tmp = n_tkt; 0

tkt = tmp = n_tkt; 0
++tmp; 1

++tmp; 1
n_tkt = tmp; 1

n_tkt = tmp; 1

T0 has ticket 0, T1 has ticket 0.
next_tkt has value 1. Your boss is
not entirely happy.

15-410, F'0831

What happened?

Each thread did “something reasonable”Each thread did “something reasonable”
� ...assuming no other thread were touching those obj ects
� ...that is, assuming “mutual exclusion”

The world is cruelThe world is cruel
� Any possible scheduling mix will happen sometime
� The one you fear will happen...
� The one you didn't think of will happen...

15-410, F'0832

The #! shell-script hack

What's a “shell script”?What's a “shell script”?
� A file with a bunch of (shell-specific) shell comma nds

 #!/bin/sh

 echo “My hovercraft is full of eels”

 sleep 10

 exit 0
� Or: a security race-condition just waiting to happe n...

15-410, F'0833

The #! shell-script hack

What's "#!"?What's "#!"?
� A venerable hack

You sayYou say
� execl("/foo/script", "script", "arg1", 0);

/foo/script “executable file” begins.../foo/script “executable file” begins...
� #!/bin/sh

The kernel rewrites your system call...The kernel rewrites your system call...
� execl("/bin/sh" "/foo/script" "arg1" , 0);

The shell doesThe shell does
� open("/foo/script", O_RDONLY, 0);

15-410, F'0834

The setuid invention

U.S. Patent #4,135,240U.S. Patent #4,135,240
� Dennis M. Ritchie
� January 16, 1979

The conceptThe concept
� A program with stored privileges
� When executed, runs with two identities

� invoker's identity
� program owner's identity

� Can switch identities at will
� Open some files as invoker
� Open other files as program-owner

15-410, F'0835

Setuid example - printing a file

GoalsGoals
� Every user can queue files
� Users cannot delete other users' files

SolutionSolution
� Queue directory owned by user printer

� Setuid queue-file program
� Create queue file as user printer
� Copy joe's data as user joe

� Also, setuid remove-file program
� Allows removal only of files you queued

� User printer mediates user joe 's queue access

15-410, F'0836

Race condition example

Process 0 Process 1
ln -s /bin/lpr /tmp/lpr

run /tmp/lpr
[setuid to user “printer”]
start “/bin/sh /tmp/lpr...”

rm /tmp/lpr
ln -s /my/exploit /tmp/lpr

script = open(“/tmp/lpr”);
execute /my/exploit

15-410, F'0837

What happened?

IntentionIntention
� Assign privileges to program contents

What happened?What happened?
� Privileges were assigned to program name
� Program name was re-bound to different contents

How would you fix this?How would you fix this?

15-410, F'0838

How to solve race conditions?

Carefully analyze operation sequencesCarefully analyze operation sequences

Find subsequences which must be Find subsequences which must be uninterrupteduninterrupted
� “Critical section”

Use a Use a synchronization mechanismsynchronization mechanism
� Next time!

15-410, F'0839

Summary

Thread: What, whyThread: What, why

Thread flavors (ratios)Thread flavors (ratios)

Race conditionsRace conditions
� Make sure you really understand this

15-410, F'0840

Further Reading

Setuid DemystifiedSetuid Demystified
� Hao Chen, David Wagner, Drew Dean
� http://www.cs.berkeley.edu/~daw/papers/setuid-useni x02.pdf
� “Abandon hope all ye who enter here”

