
What You Need to Know
for Project One

Roger Dannenberg
Dave Eckhardt

Joey Echeverria
Steve Muckle
Joshua Wise

Carnegie Mellon University 2

Synchronization

1.Please read the syllabus
a) Some of your questions are answered there :-)
b) We would rather teach than tear our hair out

2.Also please read the Project 1 handout
a) Please don't post about “Unexpected

interrupt 0”

Carnegie Mellon University 3

Overview

1.Project One motivation
2.Mundane details (x86/IA-32 version)

PICs, hardware interrupts, software interrupts and
exceptions, the IDT, privilege levels, segmentation

3.Writing a device driver
4.Installing and using Simics
5.Project 1 pieces

Carnegie Mellon University 4

Project 1 Motivation

1.Project 1 implements a game that runs
directly on x86 hardware (no OS).

2.What are our hopes for project 1?
a) introduction to kernel programming
b) a better understanding of the x86 arch
c) hands-on experience with hardware interrupts and

device drivers
d) get acquainted with the simulator (Simics) and

development tools

Carnegie Mellon University 5

Why do you care?

1.You’ll need this for Project 3
2.Lots of programs run on bare hardware

Copyright 2008 HI-TECH Software

Carnegie Mellon University 6

Same Game

Carnegie Mellon University 7

Same Game

Carnegie Mellon University 8

Same Game

Carnegie Mellon University 9

Mundane Details in x86

1.Kernels work closely with hardware
2.This means you need to know about

hardware
3.Some knowledge (registers, stack

conventions) is assumed from 15-213
4.You will learn more x86 details as the

semester goes on
5.Use the Intel PDF files as reference

(http://www.cs.cmu.edu/~410/projects.html)

Carnegie Mellon University 10

Mundane Details in x86: Privilege
Levels
1. Processor has 4

“privilege levels” (PLs)
2. Zero most-privileged,

three least-privileged
3. Processor executes at

one of the four PLs at
any given time

4. PLs protect privileged
data, cause general
protection faults

Carnegie Mellon University 11

Mundane Details in x86: Privilege
Levels
1. Nearly unused in Project 1
2. Projects 2 through 4

a) PL0 is “kernel”
b) PL3 is “user”
c) Interrupts & exceptions usually transfer from 3 to

0
d) Running user code means getting from 0 to 3

Carnegie Mellon University 12

Memory Segmentation
1. There are different kinds of memory
2. Hardware “kinds”

a) Read-only memory (for booting)
b) Video memory (painted onto screen)
c) ...

3. Software “kinds”
a) Read-only memory (typically, program code)
b) Stack (grows down), heap (grows up)
c) ...

Carnegie Mellon University 13

Memory Segmentation
1. Memory segment is a range of “the same kind”
2. Hardware

a) Mark video memory as “don't buffer writes”
3. Software

a) Mark all code pages read-only
4. Fancy software

a) Process uses many separate segments
b) Windows: each DLL is multiple segments

Carnegie Mellon University 14

Memory Segmentation
1. x86 hardware loves segments
2. Mandatory segments

a) Stack
b) Code
c) Data

3. Segments interact with privilege levels
a) Kernel stack / user stack
b) Kernel code / user code
c) ...

Carnegie Mellon University 15

x86 Segmentation Road Map
1. Segment = range of “same kind of memory”
2. Segment register = %CS, %SS, %DS, ... %GS
3. Segment selector = contents of a segment register

a) Which segment table and index do we mean?
b) What access privilege do we have to the

segment?
4. Segment descriptor = definition of segment

a) Which memory range?
b) What are its properties?

Carnegie Mellon University 16

Memory Segmentation
1. When fetching an instruction, the processor asks for

an address that looks like this: %CS:%EIP
2. So, if %EIP is 0xbabe then %CS:%EIP is the 47806th

byte of the “code segment”.

Carnegie Mellon University 17

Mundane Details in x86:
Segmentation
1. When fetching an instruction, the processor asks for

an address that looks like this: %CS:%EIP
2. The CPU looks at the segment selector in the

%CS segment register
3. A segment selector looks like this:

Carnegie Mellon University 18

Mundane Details in x86:
Segmentation
1. Segment selector has a segment number, table

selector, and requested privilege level (RPL)
2. The table-select flag selects a descriptor table

a) global descriptor table or local descriptor table
3. Segment number indexes into that descriptor table

a) 15-410 uses only global descriptor table (whew!)
4. Descriptor tables set up by operating system

a) 15-410 support code builds GDT for you (whew!)
5. You will still need to understand this, though...

Carnegie Mellon University 19

Mundane Details in x86:
Segmentation
1. Segment selector has a segment number, table

selector, and requested privilege level (RPL)
2. Table selector (done)
3. Segment number/index (done)
4. RPL generally means “what access do I have?”
5. Magic special case: RPL in %CS

a) Defines current processor privilege level
b) Think: “user mode” vs. “kernel mode”
c) Remember this for Project 3!!!

Carnegie Mellon University 20

Mundane Details in x86:
Segment Descriptors
1. Segments = area of memory with particular

access/usage constraints
2. Base, size, “stuff”
3. Logically, base and size are two 32-bit numbers,

“stuff” is flag/control bits

Carnegie Mellon University 21

Mundane Details in x86:
Segment Descriptors
1. Segments = area of memory with particular

access/usage constraints
2. Base, size, “stuff”
3. Layout:

Carnegie Mellon University 22

Mundane Details in x86:
Segmentation
1. Consider %CS segment register's segment

selector's segment descriptor
a) Assume base = 0xcafe0000
b) Assume limit > 47806

2. Assume %EIP contains 0xbabe
a) Then %CS:%EIP means “linear virtual address”

0xcafebabe (0xcafe0000 + 0x0000babe)
3. “Linear virtual address” fed to virtual memory

hardware, if it's turned on (Project 3, not Project 1)

Carnegie Mellon University 23

Implied Segment Registers
1. Programmer doesn't usually specify segment
2. Usually implied by “kind of memory access”
3. CS is the segment register for fetching code

All instruction fetches are from %CS:%EIP
4. SS is the segment register for the stack segment

PUSH, POP instructions use %SS:%ESP
5. DS is the default segment register for data access
MOVL (%EAX),%EBX fetches from %DS:%EAX
But ES, FS, and GS can be specified instead

Carnegie Mellon University 24

Mundane Details in x86:
Segmentation

1.Segments need not be backed by physical
memory and can overlap

2.Segments defined for 15-410:

Kernel Code Kernel Data User Code User Data

0xFFFFFFFF

0x00000000

Carnegie Mellon University 25

Mundane Details in x86:
Segmentation

1.Why so many?
2.You can’t specify a segment that is readable,

writable and executable.
a)Need one for readable/executable code
b)Another for readable/writable data

3.Need user and kernel segments in Project 3
for protection

4.(Code, Data) X (User, Kernel) = 4

Carnegie Mellon University 26

Mundane Details in x86:
Segmentation

Kernel Code Kernel Data User Code User Data

0xFFFFFFFF

0x00000000

Not For P1

Carnegie Mellon University 27

Mundane Details in x86:
Segmentation

1.Don’t need to be concerned with every detail
of segments in this class

2.For more information you can read the Intel
docs

3.Or our documentation at:
www.cs.cmu.edu/~410/doc/segments/segments.html

Carnegie Mellon University 28

Mundane Details in x86: Getting
into Kernel Mode

1.How do we get from user mode (PL3) to
kernel mode (PL0)?
a) Exception (divide by zero, etc.)

b) “Software Interrupt” (INT n instruction)

c) Hardware Interrupt (keyboard, timer, etc)

Carnegie Mellon University 29

Mundane Details in x86:
Exceptions

1.Sometimes user processes do stupid things
2.int gorgonzola = 128/0;
3.char* idiot_ptr = NULL; *idiot_ptr = 0;
4.These exceptions cause a handler routine to

be executed
5.Examples include divide by zero, general

protection fault, page fault

Carnegie Mellon University 30

Mundane Details in x86:
“Software Interrupts”

1.A device gets the kernel’s attention by raising
a (hardware) interrupt

2.User processes get the kernel’s attention by
raising a “software interrupt”
a)Which is not an interrupt even if Intel calls it

one!
3.x86 instruction INT n

(more info on page 346 of intel-isr.pdf)
4.Invokes handler routine

Carnegie Mellon University 31

Mundane Details in x86:
Interrupts and the PIC

1.Devices raise interrupts through the
Programmable Interrupt Controller (PIC)

2.The PIC serializes interrupts, delivers them
3.There are actually two daisy-chained PICs

CPU
PIC 1 PIC 2

Timer Keyboard IDE 1 IDE 2

Carnegie Mellon University 32

Mundane Details in x86:
Interrupts and the PIC

IDE Bus7
IDE Bus6
Coprocessor5
General I/O4
General I/O3
General I/O2
General I/O1
Real Time Clock0
PIC 2

To Processor

LPT17
Floppy6
LPT25
COM14
COM23
Second PIC2
Keyboard1
Timer0
PIC 1

Carnegie Mellon University 33

Interrupt Descriptor Table – IDT
1. Processor needs info on which handler to run when
2. Processor reads appropriate IDT entry depending

on the interrupt, exception or INT n instruction
3. Logically, an IDT entry contains a function pointer

and some flags

Carnegie Mellon University 34

Interrupt Descriptor Table – IDT
1. Processor needs info on which handler to run when
2. Processor reads appropriate IDT entry depending

on the interrupt, exception or INT n instruction
3. An entry in the IDT looks like this:

Carnegie Mellon University 35

Interrupt Descriptor Table (IDT)
1. The first 32 entries in the IDT correspond to processor

exceptions. 32-255 correspond to hardware/software
interrupts

2. Some interesting entries:

More information in section 5.12 of intel-sys.pdf.
Keyboard interrupt32
Page fault14
Divide by zero0
InterruptIDT Entry

Carnegie Mellon University 36

Typical Interrupt Handshake
Processor Device

time

I am feeling “full”. Assert
interrupt. Don’t de-assert
interrupt until processor
dismisses this one.Interrupt

Asserted

Carnegie Mellon University 37

Typical Interrupt Handshake
Processor Device

time

I am feeling “full”. Assert
interrupt. Don’t de-assert
interrupt until processor
dismisses this one.Interrupt

Asserted

Oh my!
Invoke handler.

Carnegie Mellon University 38

Typical Interrupt Handshake
Processor Device

time

I am feeling “full”. Assert
interrupt. Don’t de-assert
interrupt until processor
dismisses this one.Interrupt

Asserted

Oh my!
Invoke handler.

Request data

Send data

Send data, feel less “full”.

Process or
queue data.

Request data.

Carnegie Mellon University 39

Typical Interrupt Handshake
Processor Device

time

I am feeling “full”. Assert
interrupt. Don’t de-assert
interrupt until processor
dismisses this one.Interrupt

Asserted

Oh my!
Invoke handler.

Request data

Send data

Send data, feel less “full”.

Process or
queue data.

Stop asserting interrupt.
Ready to interrupt again.“Dismiss” signal

Dismiss
interrupt.

Request data.

Carnegie Mellon University 40

Enabling / Disabling Interrupts

1.PIC automatically disables interrupts from a
device until one dismissed by processor.

2. We also provide disable_interrupts(), which
disables interrupts from ALL devices. Think of
this as deferring interrupts. They are still out
there, waiting to happen.

3. We provide enable_interrupts(), which re-
enables interrupts.

4. Finer-grain control is also possible.

Carnegie Mellon University 41

Mundane Details in x86:
Communicating with Devices

1.I/O Ports
a) Use instructions like inb(port),
outb(port,data)

b) Are not memory!
2.Memory-Mapped I/O

a) Magic areas of memory tied to devices
3.PC video hardware uses both

a) Cursor is controlled by I/O ports
b)Characters are painted from memory

Carnegie Mellon University 42

x86 Device Perversity

1.Influence of ancient history
a) IA-32 is fundamentally an 8-bit processor!
b)Primeval I/O devices had 8-bit ports

2.I/O devices have multiple “registers”
a) Timer: waveform type, counter value
b)Screen: resolution, color depth, cursor

position
3.You must get the right value in the right

device register

Carnegie Mellon University 43

x86 Device Perversity

1.Value/bus mismatch
a) Counter value, cursor position are 16 bits
b)Primeval I/O devices still have 8-bit ports

2.Typical control flow
a) “I am about to tell you half of register 12”
b) “32”
c) “I am about to tell you the other half of register 12”
d) “0”

Carnegie Mellon University 44

x86 Device Perversity

1.Sample interaction
a)outb(command_port, SELECT_R12_LOWER);
b)outb(data_port, 32);
c)outb(command_port, SELECT_R12_UPPER);
d)outb(data_port, 0);

2.This is not intuitive (for software people).
a) Why can't we just “*R12 = 0x00000032”?

3.But you can't get anywhere on P1 without
understanding it.

Carnegie Mellon University 45

Writing a Device Driver

1.Traditionally consist of two separate halves
a) Named “top” and “bottom” halves
b) BSD and Linux use these names “differently”

2.One half is interrupt driven, executes quickly,
queues work

3.The other half processes queued work at a
more convenient time

Carnegie Mellon University 46

Writing a Device Driver

1.For this project, your keyboard driver will
likely have a top and bottom half

2.Bottom half
a) Responds to keyboard interrupts and queues

scan codes
3.Top half

a) In readchar(), reads from the queue and
processes scan codes into characters

Carnegie Mellon University 47

Installing and Using Simics

1.Simics is an instruction set simulator
2.Makes testing kernels much easier
3.Project 1 Makefile builds floppy-disk images
4.Simics boots and runs them

a) Launch simics-linux.sh in your build directory
5.Your 15-410 AFS space has p1/, scratch/
6.If you work in scratch/, we can read your files,

and answering questions can be much faster.

Carnegie Mellon University 48

Installing and Using Simics:
Running on Personal PC

1.Not a “supported configuration”
2.128.2.*.* IP addresses can use campus

license
3.You can apply for a personal single-machine

Simics license (“Software Setup Guide” page)
4.Download simics-linux.tar.gz
5.Install mtools RPM
6.Tweak Makefile

Carnegie Mellon University 49

Installing and Using Simics:
Debugging

1.Run simulation with r, stop with ctl-c
2.Magic instruction
a)xchg %bx,%bx (wrapper in interrupts.h)

3.Memory access breakpoints
a) break 0x2000 –x OR break (sym init_timer)

4.Symbolic debugging
a) psym foo OR print (sym foo)

5.See our local Simics hints (on Project page)

Carnegie Mellon University 50

Simics vs. gdb

1.Similar jobs: symbolic debugging
2.Random differences

a)Details of commands and syntax
3.Notable differences

a)Simics knows everything about PC
hardware – all magic registers, TLB
contents, interrupt masks, etc.

b)Simics is scriptable in Python

Carnegie Mellon University 51

Project 1 Pieces

1.You will build
a) A device-driver library

 “console” (screen) driver
 keyboard driver
 timer driver

b) A simple game application using your driver library
2.We will provide

a) underlying setup/utility code
b) A simple device-driver test program

Carnegie Mellon University 52

Project 1 Pieces

bootfd.img

game.o

cons kbd tmr

game

cons kbd tmr

410test .o

410test

bootable floppy disk image

Carnegie Mellon University 53

Summary

1.Project 1 runs on bare hardware
a) Not a machine-invisible language like ML or Java
b) Not a machine-portable language like C
c) Budget time for understanding this environment

2.Project 1 runs on simulated bare hardware
a) You probably need more than printf() for

debugging
b) Simics is not (exactly) gdb
c) Invest time to learn more than bare minimum

Carnegie Mellon University 54

Summary

3.Project 1 runs on bare PC hardware
a) As hardware goes, it's pretty irrational
b) Almost nothing works “how you would expect”
c) Those pesky bit-field diagrams do matter
d) Getting started is tough, so please don't delay.

4.This isn't throwaway code
a) We will read it
b) You will use it for Project 3
So spend extra time to make it really great code

