
Operating System Structure

Joey Echeverria joey42+os@gmail.com
modified by: Matthew Brewer mbrewer@andrew.cmu.edu

rampaged through by: Dave Eckhardt staff-410@cs.cmu.edu

December 5, 2007

Carnegie Mellon University: 15-410 Fall 2007

Synchronization

• P4 - due tonight

• Homework 2 - out today, due Friday night

• Book report - due Friday night (late days are possible)

• Friday lecture - exam review

• Exam - room change in progress; discard any cached values

Carnegie Mellon University: 15-410 Fall 2007 1

Outline

• OS responsibility checklist

• Kernel structures

– Monolithic kernels
∗ Kernel extensions

– Open systems
– Microkernels
– Provable kernel extensions
– Exokernels
– More microkernels

• Final thoughts

Carnegie Mellon University: 15-410 Fall 2007 2

OS Responsibility Checklist

• It’s not so easy to be an OS:

1. Protection boundaries
2. Abstraction layers
3. Hardware multiplexers

Carnegie Mellon University: 15-410 Fall 2007 3

Protection Boundaries

• Protection is “Job 1”

– Protect processes from each other
– Protect crucial services (like the kernel) from processes

• Notes

– Implied assumption: everyone trusts the kernel
– Kernels are complicated
∗ See Project 3 :)
∗ Something to think about
· Full OS is millions of lines of code
· Very roughly: correctness ∝ 1/code size

Carnegie Mellon University: 15-410 Fall 2007 4

Abstraction Layer

• Present “simple”, “uniform” interface to hardware

• Applications see a well defined interface (system calls)

– Block Device (hard disk, flash card, network mount, USB drive)
– CD drive (SCSI, IDE)
– tty (teletype, serial terminal, virtual terminal)
– filesystem (ext2-4, reiserfs, UFS, FFS, NFS, AFS, JFFS2, CRAMFS)
– network stack ({Unix,Internet,Appletalk} × {stream,message})

Carnegie Mellon University: 15-410 Fall 2007 5

Hardware Multiplexer

• Each process sees a “computer” as if it were alone

• Requires division and multiplexing of:

– Memory
– Disk
– CPU
– I/O in general (network, graphics, keyboard etc.)

• If kernel is multiplexing it must also apportion

– Fairness, priorities, classes? - HARD problems!!!

Carnegie Mellon University: 15-410 Fall 2007 6

Monolithic Kernels

• Pebbles Kernel

Carnegie Mellon University: 15-410 Fall 2007 7

Monolithic Kernels

• Consider the lowly Pebbles kernel

– Syscalls ≈ 20
∗ fork(), exec(), cas2i runflag(), yield()

– Lines of trusted code ≈ 3000 (to 24000)

Carnegie Mellon University: 15-410 Fall 2007 8

Monolithic Kernels

• Linux Kernel... similar?

Carnegie Mellon University: 15-410 Fall 2007 9

Monolithic Kernels

• Now consider a recent Linux kernel

– Syscalls: ≈ 243 in 2.4, and increasing fast
∗ fork(), exec(), read(), getdents(), ioctl(), umask()

– Lines of trusted code ≈ 7 million as of May 2007
∗ ≈ 200,000 are just for USB drivers
∗ ≈ 15,000 for USB core alone
∗ Caveats - Many archs/subarchs, every driver EVER

Carnegie Mellon University: 15-410 Fall 2007 10

Monolithic Kernels

 0

 50

 100

 150

 200

 250

 300

 350

 2004 2004.5 2005 2005.5 2006 2006.5 2007 2007.5

nu
m

 s
ys

ca
lls

year

Measured

Carnegie Mellon University: 15-410 Fall 2007 11

Monolithic Kernels

• Advantages:

+ Well understood
+ Good performance
+ High level of protection between applications

• Disadvantages:

– No protection between kernel components
– LOTS of code is in kernel
– Not (very) extensible

• Examples: UNIX, Mac OS X, Windows NT/XP, Linux, BSD, i.e., common

Carnegie Mellon University: 15-410 Fall 2007 12

Loadable Kernel Modules

• Problem - Roger has a WiMAX card, and he wants a driver

• Dave doesn’t want a (large, unstable) WiMAX driver muddying his kernel

– Probing for the nonexistent hardware at boot time may crash his machine!

• Solution - kernel modules

– Special binaries compiled “along with” kernel
– Can be loaded at run-time - so we can have LOTS of them
– Can break kernel, so loadable only by root

• done in: VMS, Windows NT, Linux, BSD, OS X

Carnegie Mellon University: 15-410 Fall 2007 13

(Loadable) Kernel Modules

Linux Kernel

Carnegie Mellon University: 15-410 Fall 2007 14

(Loadable) Kernel Modules

Linux Kernel with WiMAX module

Carnegie Mellon University: 15-410 Fall 2007 15

Kernel Extensions

• Advantages

+ Can extend kernel
+ Extensions run at “full speed” once loaded into kernel

• Disadvantages

– Adding things to kernel can break it
– Must petition system administrator to get modules added

• Any alternatives?

Carnegie Mellon University: 15-410 Fall 2007 16

Musings

• Monolithic kernels run reasonably fast, and can be extended
(at least by root)

• Some pesky overheads, though...

– System call: ≈ 90 cycles invoke PL0 code on x86
– Address space: Context switch dumps TLB - more painful over time

• Protection looks expensive...do we need it?

Carnegie Mellon University: 15-410 Fall 2007 17

Open Systems

Carnegie Mellon University: 15-410 Fall 2007 18

Open Systems

• Syscalls - none!

• Lines of trusted code - all of it!

Carnegie Mellon University: 15-410 Fall 2007 19

Open Systems

• Applications, libraries, and kernel all sit in the same address space

• Does anyone actually do this craziness?

– MS-DOS
– Mac OS 9 and prior
– Windows 3.1, 95, 95, ME, etc.
– Palm OS
– Some embedded systems

• Used to be very common

Carnegie Mellon University: 15-410 Fall 2007 20

Open Systems

• Advantages:

+ Very good performance
+ Very extensible

* Undocumented Windows, Schulman et al., 1992
* Mac OS and Palm OS each had associated extensions industry

+ Can work well in practice
+ Lack of abstractions can make real-time systems easier

• Disadvantages:

– No protection between kernel and/or applications
– Not particularly stable
– Composing extensions can result in unpredictable behavior

Carnegie Mellon University: 15-410 Fall 2007 21

Musings

• Monolithic Kernels

– Extensible (by system administrator)
– User programs mutually protected
– No internal protection - makes debugging hard, bugs CRASH

• Open Systems

– Extensible (by everyone)
– Fast, flexible
– No protection at all - unstable, plus can’t be multi-user

• Is there a way to get user extensibility and inter-module protection?

Carnegie Mellon University: 15-410 Fall 2007 22

Microkernels

• Replace the monolithic kernel with a “small, clean, logical” set of
abstractions

– Tasks
– Threads
– Virtual Memory
– Interprocess Communication

• Move the rest of the OS into server processes

Carnegie Mellon University: 15-410 Fall 2007 23

Mach “Multi-Server” Vision

Carnegie Mellon University: 15-410 Fall 2007 24

Microkernels (Mach)

Mach

• Syscalls: initially 92, increased slightly later

– msg send, port status, task resume, vm allocate

• Lines of trusted code ≈ 484,000 (Hurd version)

• Caveats - several archs/subarchs, some drivers

Carnegie Mellon University: 15-410 Fall 2007 25

Microkernels (Mach)

• Started as a project at CMU (based on RIG project from Rochester)

• Plan

1. Mach 2: BSD 4.1 Unix with new VM plus IPC, threads, SMP
2. Mach 3: Saw kernel in half and run Unix as “single server”
3. Mach 3 continued: decompose single server into smaller servers

1) 2) 3)

Carnegie Mellon University: 15-410 Fall 2007 26

Microkernels (Mach)

• Results

1. Mach 2: completed in 1989
– “Unix” with SMP, kernel threads, 5 architectures
– Used for Encore, Convex, NeXT, and subsequently OS X
– Success!

2. Mach 3: Finished(ish)
– Unix successfully removed from kernel (!!)
– Ran some servers & desktops at CMU, a few outside

3. Mach 3 continued: ...?
– Multi-server systems: “Mach-US,” Open Software Foundation
– Not really deployed to users

Carnegie Mellon University: 15-410 Fall 2007 27

Microkernels (Mach 3)

• Advantages:

+ Strong protection (most of “Unix” outside of kernel)
+ Flexibility (special non-kernel VM for databases)

• Disadvantages:

– Performance
∗ It looks like extra context switches and copying would be expensive
∗ Mach 3 ran slow in experiments
∗ Some performance tuning, but not as much as commercial Unix

distributions
– Kernel still surprisingly large -

“It’s not micro in size, it’s micro in functionality”

Carnegie Mellon University: 15-410 Fall 2007 28

Mach Microkernel as a hypervisor

• IBM’s rationale

– Our mainframes have done virtualization since the 1970’s...
– Can Mach microkernel be a multi-OS platform for tiny little machines?

• IBM Workplace OS (1991-1996)

* One kernel for MS-DOS, OS/2, MS Windows, OS/400, and AIX
* One kernel for x86 and PowerPC
* “One ring to rule them all...”
∗ Much time consumed to run MS-DOS, OS/2, and Unix on x86 kernel
∗ But people wanted x86 hardware to run MS Windows
∗ But Apple wanted PowerPC hardware to run MacOS
∗ But IBM decided not to really sell desktop PowerPC hardware

Carnegie Mellon University: 15-410 Fall 2007 29

Microkernels (Mach)

• Things to remember about Mach history

– Mach 3 == microkernel, Mach 2 == monolithic
– Code ran slow at first, then everyone graduated
– Demonstration of microkernel feasibility
– Performance cost of stability/flexibility unclear
– (Mac OS X is Mach 2, not Mach 3)

• Other interesting points

– Other microkernels from Mach period: ChorusOS, QNX
– ChorusOS, realtime kernel out of Europe, now open sourced by Sun
– QNX competes with VxWorks as a commercial real-time OS

Carnegie Mellon University: 15-410 Fall 2007 30

Musings

• We want an extensible OS

• Micro-kernel protection and scheduling seem slow

• We don’t want unsafe extensibility

• Can we safely add code to a monolithic kernel?

Carnegie Mellon University: 15-410 Fall 2007 31

Provable Kernel Extensions

Carnegie Mellon University: 15-410 Fall 2007 32

Provable Kernel Extensions

• Prove the code is safe to add to kernel

• Various (very conservative) approaches to “gatekeeper”

– Interpreter (CMU: Packet filters)
∗ Slow but clearly safe - can even bound time

– Compiler-checked source safety (UW: Spin: Modula-3)
∗ Faster code, must trust compiler

– Kernel-verified binary safety (CMU: Proof-carrying code)
∗ Language agnostic - in theory any compiler can generate proofs

• Safe? If you trust base kernel and gatekeeper.

Carnegie Mellon University: 15-410 Fall 2007 33

Provable Everything

What if everything were a proven kernel extension?

Carnegie Mellon University: 15-410 Fall 2007 34

Provable Everything

• Advantages:

+ Freely extensible by users (every application is a kernel extension)
+ Good performance because everything is in the kernel
+ “Provably” safe

• Disadvantages:

– Effectiveness strongly dependent on quality of proofs
– Some proofs are hard, some proofs are impossible!
– Proof checking can be slow
– Code simple enough to prove correct might cost more than protection

boundaries
– Current research: MSR’s “Singularity” OS

Carnegie Mellon University: 15-410 Fall 2007 35

Musings

• Monolithic kernel

– Extensibility limited (kernel modules are privileged)
– Large “base system” is mandatory for all users

• Open systems: unstable

• “Abstraction” microkernels (Mach)

– Performance concerns; Were the best kernel abstractions chosen?

• Proof systems: feasible for complex applications?

• If applications control system, can optimize for their usage cases

Carnegie Mellon University: 15-410 Fall 2007 36

Exokernels

• Allow application writers full control over hardware resources

• Kernel’s job is to safely share hardware without abstractions

– Application knows page-table format
– Application flushes TLB when necessary

• Remove all of “operating system” from kernel, leaving threads and mini-VM

• Separates security and protection from the management of resources

Carnegie Mellon University: 15-410 Fall 2007 37

Exokernels (Xok/ExOS)

Carnegie Mellon University: 15-410 Fall 2007 38

Exokernel (Xok)

Xok

• Syscalls ≈ 120

– insert pte, pt free, quantum set, disk request

• Lines of trusted code ≈ 100,000

• Caveats - One arch, few/small drivers

Carnegie Mellon University: 15-410 Fall 2007 39

Exokernels: VM Example

• There is no fork()

• There is no exec()

• There is no automatic stack growth

• Exokernel keeps track of physical memory pages
Assigns them to an application on request

– Application (via syscall):
1. Requests frame
2. Requests map of virtual → physical

Carnegie Mellon University: 15-410 Fall 2007 40

Exokernels: simple fork()

• fork():

– Acquire a new, blank address space
– Allocate some physical frames
– Map physical pages into blank address space
– Copy bits (from us) to the target address space
– Allocate a new thread and bind it to the address space
– Fill in new thread’s registers and start it running

• The point is that the kernel doesn’t provide fork()

Carnegie Mellon University: 15-410 Fall 2007 41

Exokernels: COW fork()

• fork(), advanced:

– Acquire a new, blank address space
– Create copy-on-write table in each address space
– Add R/O PTE’s for my frames into the blank address space
– Replace each of my PTE’s with a R/O PTE
– Flush TLB
– Application’s page-fault handler (like a signal handler) copies/re-maps

• Each process can have its own fork() optimized for it

– If I know certain pages will fault, I can “pre-copy” exactly those pages

Carnegie Mellon University: 15-410 Fall 2007 42

Exokernels: Web Server Example

• Traditional kernel and web server:

2. read() − copy from kernel to user buffer

3. send() − user buffer to kernel buffer

 −− data is check−summed

1. read() − copy from disk to kernel buffer Memory
Memory Bus

EthernetProcessorDisk

1 2 3
4. send() − kernel buffer to device memory

4

That is: six bus crossings

Carnegie Mellon University: 15-410 Fall 2007 43

Exokernels: Web Server Example

• What fundamentally needs to happen:

1. Copy from disk to memory
2. Copy from memory to network device

EthernetDisk

Memory

1

Memory Bus

2

That is: two bus crossings

Carnegie Mellon University: 15-410 Fall 2007 44

Exokernels: Web Server Example

• Exokernel and Cheetah:

– “File system” doesn’t store files, stores packet-body streams
∗ Data blocks are co-located with pre-computed data checksums

– Header is tweaked before transmission (TCP checksums can be
“patched”)

– No need to re-chunk file data into packets, checksum all data bytes

TCP DATA IP TCP DATA

DATADATADATA DATA DATA DATA

Traditional Packet
Construction Construction

Disk:

Packets:

...

Cheetah Packet

IP

Carnegie Mellon University: 15-410 Fall 2007 45

Exokernels: Cheetah Performance

Carnegie Mellon University: 15-410 Fall 2007 46

Exokernels

• Advantages:

+ Extensible: just add a new “operating system library”
+ Fast: Applications intimately manage hardware, no obstruction layers
+ Safe: Exokernel allows safe sharing of resources

• Disadvantages:

– Taking advantage of Exo may mean writing an OS for each app
– Nothing about moving an OS into libraries makes it easier to write
– Slow? Many many small syscalls instead of one big syscall
– sendfile(2) - Why change when you can steal?
– Requires policy: despite assertions to the contrary

Carnegie Mellon University: 15-410 Fall 2007 47

Exokernels

• Xok development is mostly over

• Torch has been passed to L4

Carnegie Mellon University: 15-410 Fall 2007 48

More Microkernels (L4)

Carnegie Mellon University: 15-410 Fall 2007 49

More Microkernels (L4)

L4 - http://os.inf.tu-dresden.de/L4/

• Syscalls < 20

– memory control, start thread, IPC (send/recv on stringItem, Fpage)

• Lines of trusted code ≈ 37,000

• Caveats - one arch, nearly no drivers (add just what you need)

Carnegie Mellon University: 15-410 Fall 2007 50

Microkernel OS’n (L4Linux, DROPS)

• L4Linux - run Linux on L4

– You get Linux, but a bit slower
– You get multiple Linux’s at a time
– You get a realtime microkernel too

• DROPS - a real-time OS for L4

– Realtime, and minimal (no inter-application security)

• Combine the two for a real-time OS and Linux... (mostly dead)

Carnegie Mellon University: 15-410 Fall 2007 51

More Microkernels (L4)

• Advantages:

+ Fast as hypervisor, similar to Mach (L4Linux 4% slower than Linux)
+ VERY good separation (if we want it)
+ Supports multiple OS personalities
+ Soft real-time

• Disadvantages:

– Smaller than Mach at present
– Still growing (capabilities, ...)
– No experience with multi-server OS (how will it perform?)

Carnegie Mellon University: 15-410 Fall 2007 52

Summing Up

Carnegie Mellon University: 15-410 Fall 2007 53

Summing Up

• So why don’t we use microkernels or something similar?

• Say we have a micro-(or exo)-kernel, and make it run fast

– We describe things we can do in userspace faster (like Cheetah)
– Monolithic developer listens intently
– Monolithic developer adds functionality to his/her kernel (sendfile(2))
– Monolithic kernel again runs as fast or faster than our microkernel

• If monolithic kernels run fast, why consider other organizations?

– Stability - new device drivers break Linux often, we use them anyway
– Complexity - when everything interacts, debugging a large kernel gets

hard

Carnegie Mellon University: 15-410 Fall 2007 54

Summing Up

What’s the moral?

• There are many ways to do things

• Many of them even work

• Surprisingly, we still haven’t settled on a single notion of “kernel”

Carnegie Mellon University: 15-410 Fall 2007 55

Further Reading

• Jochen Liedtke, On Micro-Kernel Construction

• Willy Zwaenepoel, Extensible Systems are Leading OS Research Astray

• Michael Swift, Improving the Reliability of Commodity Operating Systems

• An Overview of the Singularity Project, Microsoft Research MSR-TR-2005-
135

• Harmen Hartig, The Performance of µ-Kernel-Based Systems

Carnegie Mellon University: 15-410 Fall 2007 56

Further Reading

CODE: (in no particular order)

• Minix (micro)

• Plan 9 (“right-sized”)

• NewOS/Haiku (micro’ish)

• L4 Pistachio (micro)

• Solaris (monolithic)

• NetBSD, DragonflyBSD (monolithic)

Carnegie Mellon University: 15-410 Fall 2007 57

