
Atomic Transactions

December 3, 2007

Jeffrey L. Eppinger
Professor of the Practice

School of Computer Science

15-410 Operating Systems

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger2

So Who Is This Guy?

Jeff Eppinger (eppinger@cmu.edu, EDSH 229)
– Ph.D. Computer Science (CMU 1988)
– Asst Professor of Computer Science (Stanford 1988-1989)
– Co-founder of Transarc Corp. (Bought in 1994 by IBM)

• Transaction Processing Software

• Distributed File Systems Software

– IBM Faculty Loan to CMU eCommerce Inst. (1999-2000)
– Joined SCS Faculty in 2001
– Lecture Style: ¿Questioning?

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger3

What Do Transactions Do?

• They ensure the consistency of data
– In the face of concurrency
– In the face of failure

• They improve performance
– In many cases

• In many common cases

– But not always

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger4

Do You Do ACID?

• What is ACID?
• The ACID properties are the guarantees

provided by the transaction system:
– Atomicity: all or none

– Consistency: if consistent before transaction, so too after

– Isolation: despite concurrent execution, ∃ serial ordering

– Durability: committed transaction cannot be undone

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger5

When Are Transactions Used?

• When you use:
– File Systems

• Remember fsck, chkdsk, scandisk?
• Before File Systems used transactions it could take

hours for a large file system to recover from a crash

– Databases
– Applications build on databases

• Banking Applications
• Web Applications
• BeanFactory

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger6

Who Invented Atomic Transactions?

• The guys that built TP Monitors
• Most notable advocate: Jim Gray

– The guru of transactions systems
– Berkeley, Ph.D.
– Famously worked at IBM, then Tandem, finally Microsoft
– Presumed lost at sea in January 2007
– Wrote the bible on transaction systems:
 Transaction Processing: Concepts and Techniques, 1992

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger7

Outline

� What Do Transactions Do?
� When Are Transactions Used?
� Who Invented Atomic Transactions?
� How

– How do you use transactions?
– How do you implement them?

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger8

How do I use transactions?

public void deposit(int acctNum, double amount)

 throws RollbackException

{

 Transaction.begin();

 Acct a = acctFactory.lookup(acctNum);

 a.setBalance(a.getBalance()+amount);

 Transaction.commit();

}

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger9

Accounts are JavaBeans

public class Acct {

 private int acctNum;

 private double balance;

 public Acct(int acctNum) { this.acctNum = acctN um; }

 public int getAcctNum() { return acctNum; }

 public double getBalance() { return balance; }

 public void setBalance(double x) { balance = x; }

}

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger10

BeanFactory
public interface BeanFactory {
 public B create(Object... priKeyValues) thro ws RollbackExce…
 public void delete(Object... priKeyValues) thro ws RollbackExce…
 public int getBeanCount() thro ws RollbackExce…
 public B lookup(Object... priKeyValues) thro ws RollbackExce…
 public B[] match(MatchArg... constaints) thro ws RollbackExce…
 …
}

• BeanFactory uses Java Reflection to obtain the bean properties
• Methods throw RollbackException in case of any failure

– (The transaction is rolled back before throwing the exception)
• BeanFactory implementations use the Abstract Factory pattern

– There are multiple implementations of BeanFactory:
• Using a relational database
• Using files

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger11

Transactions

• Transactions are associated with threads
• When called in a transaction, beans returned by

create(), lookup(), and match() are tracked and
their changes are “saved” at commit time

public class Transaction {

 public static void begin() throws RollbackExce ption {…}

 public static void commit() throws RollbackExce ption {…}

 public static boolean isActive() {…}

 public static void rollback() {…}

}

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger12

The classic debit/credit example

public void xfer(int fromAcctNum,
 int toAcctNum,
 double amount) throws RollbackExce ption
{
 Transaction.begin();
 Acct t = acctFactory.lookup(toAcctNum);
 t.setBalance(t.getBalance()+amount);
 Acct f = acctFactory.lookup(fromAcctNum);
 f.setBalance(f.getBalance()-amount);
 Transaction.commit();
}

• Error cases not addressed (acct not found, low balance)

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger13

public void xfer(int fromAcctNum,
 int toAcctNum,
 double amount)
 throws RollbackException
{
 Transaction.begin();
 Acct t = acctFactory.lookup(toAcctNum);
 t.setBalance(t.getBalance()+amount);
 Acct f = acctFactory.lookup(fromAcctNum);
 f.setBalance(f.getBalance()-amount);
 Transaction.commit();
}

Remember the
ACID Properties?

Atomicity: all or none

Consistency: if before than after

Isolation: serial ordering

Durability: cannot be undone

�
�
�
�

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger14

How Are ACID Properties Enforced?

• A simple, low-performance implementation
– One (CSV) file holds contains all the data
– Atomicity – write a new file and then use

rename to replace old version (slow)
– Consistency – app’s problem
– Isolation – locking w/ one mutex (slow)
– Durability – trust the file system (weak)

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger15

How Are ACID Properties Enforced?

• A high-performance implementation
– Complex disk data structures (B-trees in MySQL)
– Atomicity – write-ahead logging
– Consistency – app’s problem
– Isolation – two-phase locking
– Durability – write-ahead logging

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger16

Write-ahead Logging

• Provides atomicity & durability
• Buffer database disk pages in a memory buffer cache
• Log (on disk) all changes to DB before they are written (out to disk)

– When changing data pages, queue (to log) records that describe changes
– When committing, queue “commit-record” into log, flush log (to disk)
– Before writing out cached DB pages, ensure relevant log recs flushed

• Recover from the log
– When restarting after a failure, scan the log:

(Case 1) Redo transactions with commit records, as necessary
(Case 2) Undo transactions without commit records, as necessary

– When handling user or system initiated rollbacks:
(Case 3) Scan the log and undo all the work

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger17

How Do You Describe Changes?

• Value Logging
– E.g., old value = 4, new value = 5

• Operation Logging
– E.g., increment by 1,
– E.g., insert file 436 into directory 123

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger18

Sample Log

Transaction.begin();

<fromAcctNum>

balance:$100

LogDisk
Storage …

Green log
records have

been flushed to
disk

Memory
Buffer Cache

<toAcctNum>

balance: $3

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger19

Sample Log

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

…t.getBalance()…

…

<toAcctNum>

balance: $3

LogMemory
Buffer Cache

Disk
Storage

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $3

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger20

Sample Log

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

t.setBalance(t.getBalance()+20);

…
LogDisk

Storage

10:Change rec: tid #58
<toAcctNum>
old-value: $3
new-value: $23

Pink log
records are
buffered in

memory

Memory
Buffer Cache

Log Seq
Number

<toAcctNum>

balance: $23

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $3

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger21

Sample Log

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

t.setBalance(t.getBalance()+20);

Acct f = factory.lookup(fromAcctNum);

…f.getBalance()…

<fromAcctNum>

balance:$100

LogDisk
Storage …

Memory
Buffer Cache

<toAcctNum>

balance: $23

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $3

10:Change rec: tid #58
<toAcctNum>
old-value: $3
new-value: $23

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger22

Sample Log

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

t.setBalance(t.getBalance()+20);

Acct f = factory.lookup(fromAcctNum);

f.setBalance(f.getBalance()-20);

LogDisk
Storage …

…

12:Change rec: tid #58
<fromAcctNum>
old-value: $100
new-value: $80

Memory
Buffer Cache

10:Change rec: tid #58
<toAcctNum>
old-value: $3
new-value: $23

<fromAcctNum>

balance: $80

<toAcctNum>

balance: $23

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $3

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger23

Sample Log

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

t.setBalance(t.getBalance()+20);

Acct f = factory.lookup(fromAcctNum);

f.setBalance(f.getBalance()-20);

Transaction.commit();

LogDisk
Storage …

…
Memory

Buffer Cache

13:Commit: tid #58

<fromAcctNum>

balance: $80

<toAcctNum>

balance: $23

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $3

12:Change rec: tid #58
<fromAcctNum>
old-value: $100
new-value: $80

10:Change rec: tid #58
<toAcctNum>
old-value: $3
new-value: $23

To Commit:
 1) Append “Commit”
rec.
 2) Flush log buffer

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger24

¡Performance Improvement!

• You do not need to flush the memory buffer cache
to commit a transaction
– Only need to flush the buffered log records
– Great locality…all those disparate buffer cache data

pages can be written out later…writes of hot pages will
contain changes from many transactions

• All transactions share one log
– You can commit several transactions with one log write

• The log is append only and rarely read
– So it’s very efficient to write…great locality
– Optimizations abound for increasing throughput

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger25

Recovery after System Failure:
Crash after commit (Case 1)

LogDisk
Storage …

…
Memory

Buffer Cache

13:Commit: tid #58

12:Change rec: tid #58
<fromAcctNum>
old-value: $100
new-value: $80

10:Change rec: tid #58
<toAcctNum>
old-value: $3
new-value: $23

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $3

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger26

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $3

Recovery after System Failure:
Redo committed transactions (Case 1)

LogDisk
Storage …

…
Memory

Buffer Cache

13:Commit: tid #58

23

80
12:Change rec: tid #58
<fromAcctNum>
old-value: $100
new-value: $80

10:Change rec: tid #58
<toAcctNum>
old-value: $3
new-value: $23

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger27

Buffer Cache
Can Be Flushed
Mid-Transaction

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

t.setBalance(t.getBalance()+20);

Acct f = factory.lookup(fromAcctNum);

f.setBalance(f.getBalance()-20);

LogDisk
Storage …

…
Memory

Buffer Cache

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $23

<fromAcctNum>

balance: $80

10:Change rec: tid #58
<toAcctNum>
old-value: $3
new-value: $23

12:Change rec: tid #58
<fromAcctNum>
old-value: $100
new-value: $80Be sure the relevant portion

of the log is flushed before
the buffer cache is flushed

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger28

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $23

Recovery after System Failure:
Undo uncommitted transactions (Case 2)

LogDisk
Storage …

Memory
Buffer Cache

3

partial work of

^

10:Change rec: tid #58
<toAcctNum>
old-value: $3
new-value: $23

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger29

<fromAcctNum>

balance: $80

<toAcctNum>

balance: $23

Rollback using
the log (Case 3)

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

t.setBalance(t.getBalance()+20);

Acct f = factory.lookup(fromAcctNum);

f.setBalance(f.getBalance()-20);

Transaction.rollback();

LogDisk
Storage …

…
Memory

Buffer Cache

3

100

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $3

12:Change rec: tid #58
<fromAcctNum>
old-value: $100
new-value: $80

10:Change rec: tid #58
<toAcctNum>
old-value: $3
new-value: $23

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger30

What else is in the log?

• You cannot afford to process the whole log at
system restart
– You need to come up quickly

• Many optimizations and special cases
– Periodically checkpoint records are written describing

the state of the buffer cache
– Rollback records written to the log
– Long running transactions are rolled back
– Storing Log Sequence Numbers (LSNs) on data pages
– Page flush records written to the log

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger31

How Are ACID Properties Enforced?

� Atomicity – write-ahead logging
� Consistency – app’s problem
¿ Isolation – two-phase locking ?
� Durability – write-ahead logging

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger32

Different Types of “Locks”

Certainly you are familiar with:
• Exclusive Locks

– E.g., Mutex Locks

• Shared/Exclusive Locks
– E.g., Read/Write Locks

Alone the above does not guarantee Isolation
• Why? Because of relocking & rollbacks

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger33

Debit/Credit with Error Checks
public void xfer(int fromAcctNum,
 int toAcctNum,
 double amount) throws RollbackExce ption {
{
 try {
 Transaction.begin();

 Acct t = acctFactory.lookup(toAcctNum);
 if (t == null) throw new RollbackException("No acct: "+toAcctNum);
 t.setBalance(t.getBalance()+amount);

 Acct f = acctFactory.lookup(fromAcctNum);
 if (f == null) throw new RollbackException("No acct: "+fromAcctNum);
 if (f.getBalance() < amount) throw new Roll backException("Not enough…
 f.setBalance(f.getBalance()-amount);

 Transaction.commit();
 } finally {
 if (Transaction.isActive()) Transaction.rol lback();
 }
}

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger34

<fromAcctNum>

balance:$100

<toAcctNum>

balance:$103

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

exclusiveLock(t);

if (t.getBalance() < 100) throw ...;

t.setBalance(t.getBalance()-100);

unlock(t);

Transaction.commit();

Log

…

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $3

21:Change rec: tid #69
<toAcctNum>
old-value: $203
new-value: $103

20:Change rec: tid #68
<toAcctNum>
old-value: $3
new-value: $203

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

exclusiveLock(t);

t.setBalance(t.getBalance()+200);

unlock(t);

Acct f = factory.lookup(fromAcctNum);

exclusiveLock(f);

if (f.getBalance() < 200))

 ... Transaction.rollback();
Broken

Locking

Example

22:Commit: tid #69

xfer()
debit()

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger35

Problems with Previous Example

1. Debit transaction (#69) sees a balance that
will never exist when transactions execute
in isolation

2. Transfer transaction (#68) cannot rollback
because we cannot undo it’s work but
leave #69s work!

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger36

Use Two-Phase Locking

Phase 1: grab locks; Phase 2: drop locks
• You’re not allowed to get any new locks after you

start dropping your locks
• To execute rollback you must hold locks
• Usually, we hold all locks until commit or rollback

has completed
– E.g., there is a lock() method, but no unlock()…locks are

dropped by commit() or rollback() methods

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger37

?

<fromAcctNum>

balance:$100

<toAcctNum>

balance:$203

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

exclusiveLock(t);

if (t.getBalance() < 100) throw ...;

t.setBalance(t.getBalance()-100);

unlock(t);

Transaction.commit();

Log

…

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $3 20:Change rec: tid #68
<toAcctNum>
old-value: $3
new-value: $203

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

exclusiveLock(t);

t.setBalance(t.getBalance()+200);

unlock(t);

Acct f = factory.lookup(fromAcctNum);

exclusiveLock(f);

if (f.getBalance() < 200))

 ... Transaction.rollback();

xfer()
debit()

X

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger38

<fromAcctNum>

balance:$100

<toAcctNum>

balance:$203

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

exclusiveLock(t);

if (t.getBalance() < 100) throw ...;

t.setBalance(t.getBalance()-100);

unlock(t);

Transaction.commit();

Log

…

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $3 20:Change rec: tid #68
<toAcctNum>
old-value: $3
new-value: $203

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

exclusiveLock(t);

t.setBalance(t.getBalance()+200);

unlock(t);

Acct f = factory.lookup(fromAcctNum);

exclusiveLock(f);

if (f.getBalance() < 200))

 ... Transaction.rollback();

21:Rollback: tid #68

xfer()
debit()

3

22:Rollback: tid #69

X

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger39

Alternate Locking Schemes

• Many locking optimizations and fancy
schemes have been devised
– E.g., Increment lock and operation logging

• Increment locks are compatible with each other
• Increment locks not compat with read or write locks

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger40

<fromAcctNum>

balance:$100

<toAcctNum>

balance:$103

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

incrementLock(t);

if (t.getBalance() < 100) throw ...;

t.setBalance(t.getBalance()-100);

Transaction.commit();

Log

…

<fromAcctNum>

balance:$100

<toAcctNum>

balance: $3

21:Change rec: tid #69
<toAcctNum>
increment-by: –$100

20:Change rec: tid #68
<toAcctNum>
increment-by: $200

Transaction.begin();

Acct t = factory.lookup(toAcctNum);

incrementLock(t);

t.setBalance(t.getBalance()+200);

Acct f = factory.lookup(fromAcctNum);

exclusiveLock(f);

if (f.getBalance() < 200))

 ... Transaction.rollback();

22:Commit: tid #69

xfer()
debit()

23:Rollback: tid #68

-97

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger41

Avoiding Lock-out

• Locks are held on specific portions of the data
• Avoid dead-lock: E.g.,ordering: if all transactions

(threads) grab locks in “alphabetical” order (or any
specific ordering)
– Alternatively, deal with it using timeout

• Timeout transactions are rolled back by the “system”

• Avoid live-lock: E.g., waiting writers prevent new
transactions from getting read locks

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger42

How Does Data Get Written to Disk?

• Does the OS buffer the writes?
– Not for DB files

• Does the disk write happen atomically?
– Manufacturers use NV memory
– Recovery gurus add check bits & LSNs to headers

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger43

What About Disasters

• Power failure?
• Data disk failure?
• Log disk failure?
• Machine room failure?

– Fire, flood, explosions, etc

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger44

What About Disasters

• Power failure: write-ahead logging
• Data disk failure: backup tapes & log
• Log disk failure: mirror the log
• Machine room failure: mirror the log elsewhere

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger45

Why Is This Relevant to OS?

• Databases stole all this from operating systems
and transaction systems

• Some OS services are better implemented using
ACID properties
– Journaling file systems

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger46

History

• First, atomic transactions were added on at
application-level (in TP Monitors)

• Then they were added to OS (mostly research OSs)
• Then they were back in the app with RBDs
• Then they were generalized to create DTP

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger47

Distributed Two-Phase Commit

• You can have distributed transactions
–RPC, access multiple databases, etc
–DTP: Prepare Phase (subs flush), Commit

Phase (coord flush)

Savings Checking

App
Server

Log

LogLog

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger48

Why Do You Care?

• RDBs are happy to manage whole disks
• There is more to life than relational data

– HTML, Images, Office Docs, Source, Binaries

• If you don’t otherwise need a RDB, put your
files in a file system

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger49

File Systems & Transactions

• If you don’t allow user-level apps to compose
transactions, implementation is easier

• FS Ops that require ACID properties:
– For sure: create, delete, rename, modify properties
– Often: write

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger50

How File Systems Implement ACID?

• Older/low-tech file systems are not log-based
– Carefully writing to the disk
– scandisk, chkdsk, fsck

• Newer file systems are log-based
– E.g., NTFS, Network Appliance’s NFS, JFS
– Transactions are specialized

• Not running general, user provided transactions
– creat(), rename()

• Allows specialized locking and logging

03-Dec-2007 15-600 Lecture Notes Copyright (C) 2002-2007 J. L. Eppinger51

Any Questions?

