
15-410, F'071

Scheduling
Oct 26, 2007

Roger DannenbergRoger Dannenberg
Dave Dave EckhardtEckhardt

15-410
“...Everything old is new again...”

15-410, F'072

Synchronization

Checkpoint 3Checkpoint 3
 “End of third week”
 No cluster meeting – regular lecture
 Expect: code drop, milestone-estimation form

 Spending the time to really plan is worthwhile

15-410, F'073

Outline

Chapter 5: SchedulingChapter 5: Scheduling
 Scheduling-people/textbook terminology note

 “Waiting time” means “time spent runnable but stuck in a
scheduler queue”

» Not “time waiting for an event to awaken you”
 “Task” means “something a scheduler schedules” (we say

“thread” or sometimes “runnable”)

15-410, F'074

CPU-I/O Cycle

ProcessProcess view: 2 states view: 2 states
 Running
 Blocked on I/O
Life Cycle:

 I/O (loading executable), CPU, I/O, CPU, .., CPU (exit())

SystemSystem view view
 Running
 Blocked on I/O
 Runnable (i.e. Waiting) – not enough processors right now

Running Running ⇒⇒ blocked mostly depends on program blocked mostly depends on program
 How long do processes run before blocking?

15-410, F'075

CPU Burst Lengths

OverallOverall
 Exponential fall-off in CPU burst length

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

100

15-410, F'076

CPU Burst Lengths

““CPU-boundCPU-bound”” program program
 Batch job
 Long CPU bursts

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

100

15-410, F'077

CPU Burst Lengths

““I/O-boundI/O-bound”” program program
 Copy, Data acquisition, ...
 Tiny CPU bursts between system calls

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

100

15-410, F'078

Preemptive?

Four opportunities to scheduleFour opportunities to schedule
 A running process waits (I/O, child, ...)
 A running process exits
 A blocked process becomes runnable (I/O done)
 Other interrupt (clock, page fault)

Multitasking typesMultitasking types
 Fully Preemptive: All four cause scheduling
 “Cooperative”: only first two

15-410, F'079

Preemptive kernel?

Preemptive Preemptive multitaskingmultitasking
 All four cases cause context switch

Preemptive Preemptive kernelkernel
 All four cases cause context switch in kernel mode
 This is a goal of Project 3

 System calls: interrupt disabling only when really necessary
 Clock interrupts should suspend system call execution

» So fork() should appear atomic, but not execute that way

15-410, F'0710

CPU Scheduler

Invoked when CPU becomes idle and/or time passesInvoked when CPU becomes idle and/or time passes
 Current task blocks
 Clock interrupt

Select next taskSelect next task
 Quickly
 PCB's in: FIFO, priority queue, tree, ...

Switch (using Switch (using ““dispatcherdispatcher””))
 Your term may vary

15-410, F'0711

Dispatcher

Set down running taskSet down running task
 Save register state
 Update CPU usage information
 Store PCB in “run queue”

Pick up designated taskPick up designated task
 Activate new task's memory

 Protection, mapping
 Restore register state
 “Return” to whatever the task was previously doing

15-410, F'0712

Consider…

Who goes first? Last?Who goes first? Last?
Now who goes first? Last?Now who goes first? Last?
Does this change things?Does this change things?

15-410, F'0713

Scheduling Criteria

System administrator viewSystem administrator view
 Maximize/trade off

 CPU utilization (“busy-ness”)
 Throughput (“jobs per second”)

Process viewProcess view
 Minimize

 Turnaround time (everything)
 Waiting time (runnable but not running)

User view (interactive processes)User view (interactive processes)
 Minimize response time (input/output latency)

15-410, F'0714

Algorithms

Don't try these at homeDon't try these at home
 FCFS
 SJF
 Priority

ReasonableReasonable
 Round-Robin
 Multi-level (plus feedback)

Multiprocessor, real-timeMultiprocessor, real-time

15-410, F'0715

FCFS- First Come, First Served

Basic ideaBasic idea
 Run task until it relinquishes CPU
 When runnable, place at end of FIFO queue

Waiting time Waiting time veryvery dependent on mix dependent on mix
 Some processes run briefly, some much longer

““Convoy effectConvoy effect””
 N tasks each make 1 I/O request, stall (e.g., file copy)
 1 task executes very long CPU burst

 All I/O tasks become runnable during this time
 Lather, rinse, repeat

 Result: N “I/O-bound tasks” can't keep I/O devices busy!

15-410, F'0716

SJF- Shortest Job First

Basic ideaBasic idea
 Choose task with shortest next CPU burst
 Will give up CPU soonest, be “nicest” to other tasks
 Provably “optimal”

 Minimizes average waiting time across tasks
 Practically impossible (oh, well)

 Could predict next burst length...
» Text suggests averaging recent burst lengths
» Does not present evaluation (Why not? Hmm...)

15-410, F'0717

Priority

Basic ideaBasic idea
 Choose “most important” waiting task

 (Nomenclature: does “high priority” mean p=0 or p=255?)

Priority assignmentPriority assignment
 Static: fixed property (engineered?)
 Dynamic: function of task behavior

Big problem: Big problem: StarvationStarvation
 “Most important” task gets to run often
 “Least important “ task may never run
 Possible hack: priority “aging”

15-410, F'0718

Round-Robin

Basic ideaBasic idea
 Run each task for a fixed “time quantum”
 When quantum expires, append to FIFO queue

““FairFair””
 But not “provably optimal”

Choosing quantum lengthChoosing quantum length
 Infinite (until process does I/O) = FCFS
 Infinitesimal (1 instruction) = “Processor sharing”

 A technical term used by theory folks
 Balance “fairness” vs. context-switch costs

15-410, F'0719

True “Processor Sharing”

CDC Peripheral ProcessorsCDC Peripheral Processors
Memory latencyMemory latency

 Long, fixed constant
 Every instruction has a

memory operand

Solution: round robinSolution: round robin
 Quantum = 1 instruction

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F'0720

True “Processor Sharing”

CDC Peripheral ProcessorsCDC Peripheral Processors
Memory latencyMemory latency

 Long, fixed constant
 Every instruction has a

memory operand

Solution: round robinSolution: round robin
 Quantum = 1 instruction
 One “process” running
 N-1 “processes” waiting

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F'0721

True “Processor Sharing”

Each instructionEach instruction
 “Brief” computation
 One load or one store

 Sleeps process N cycles

Steady stateSteady state
 Run when you're ready
 Ready when it's your turn

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F'0722

Everything Old Is New Again

Intel Intel ““hyperthreadinghyperthreading””
 N register sets
 M functional units
 Switch on long-running

operations
 Sharing less regular
 Sharing illusion more lumpy

 Good for some application
mixes

 Awful for others
 “Hyperthreading Hurts Server

Performance, Say Developers”

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F'0723

Multi-level Queue

N independent process queuesN independent process queues
 One per priority
 Algorithm per-queue

Priority 0 P1 P7

Priority 1 P2 P9 P3

Batch P0 P4

R. Robin

R. Robin

FCFS

15-410, F'0724

Multi-level Queue

Inter-queue scheduling?Inter-queue scheduling?
 Strict priority

 Pri 0 runs before Pri 1, Pri 1 runs before batch – every time
 Time slicing (e.g., weighted round-robin)

 Pri 0 gets 2 slices
 Pri 1 gets 1 slice
 Batch gets 1 slice

15-410, F'0725

Multi-level Feedback Queue

N queues, different quantaN queues, different quanta
Block/sleep before quantum expires?Block/sleep before quantum expires?

 Added to end of your queue (“good runnable”)

Exhaust your quantum?Exhaust your quantum?
 Demoted to slower queue (“bad runnable!”)

 Lower priority, typically longer quantum

Can you be promoted back up?Can you be promoted back up?
 Maybe I/O promotes you
 Maybe you “age” upward

Popular Popular ““time-sharingtime-sharing”” scheduler scheduler

15-410, F'0726

Multiprocessor Scheduling

Common assumptionsCommon assumptions
 Homogeneous processors (same speed)
 Uniform memory access (UMA)

Goal: Load sharing / Load balancingGoal: Load sharing / Load balancing
 “Easy”: single global ready queue – no false idleness

But: But: ““Processor AffinityProcessor Affinity””
 Some processor may be more desirable or necessary

» Special I/O device
» Fast thread switch
» 1/Nth of memory may be faster

15-410, F'0727

Multiprocessor Scheduling

Asymmetric multiprocessingAsymmetric multiprocessing
 Also known as “master/slave”
 One processor is “special”

 Executes all kernel-mode instructions
 Schedules other processors

 “Special” aka “bottleneck”

Symmetric multiprocessing - Symmetric multiprocessing - ““SMPSMP””
 “Gold standard”
 Tricky

15-410, F'0728

Real-Time Scheduling
WhatWhat’’s a computation worth?s a computation worth?

Real Time: No (extra) value if early (or in some cases,Real Time: No (extra) value if early (or in some cases,
curve just falls off fast)curve just falls off fast)

time →

time → time → time →

15-410, F'0729

“Hard Real Time”: Many Definitions
Very fast response time -- 10s of µsVery fast response time -- 10s of µs

No value if results are late:No value if results are late:

Very costly if late:Very costly if late:

Never lateNever late

Note: literature is unclear about the Note: literature is unclear about the ““realreal”” definition. definition.

15-410, F'0730

Hard Real-Time Scheduling
 Designers must describe task requirements

 Worst-case execution time of instruction sequences
 “Prove” system response time

 Argument or automatic verifier
 Cannot use indeterminate-time technologies

 Disks?
 Networks?

 Solutions often involve
 Simplified designs
 Over-engineered systems
 Dedicated hardware
 Specialized OS

15-410, F'0731

More Definitions: “Soft Real Time”
Computation is still has value after deadlineComputation is still has value after deadline

 Think User Interface
 Many control systems

Performance is not critical (no one will die)Performance is not critical (no one will die)
 YouTube video
 Skype

ItIt’’s acceptable for system to be late sometimess acceptable for system to be late sometimes
 User Interfaces
 CD-R writing software

15-410, F'0732

Soft Real-Time Scheduling
Now commonly supported in generic OSNow commonly supported in generic OS

 POSIX real-time extensions for Unix

Priority-based SchedulerPriority-based Scheduler
Preemptible Preemptible kernel implementationkernel implementation

15-410, F'0733

Scheduler Evaluation
Approaches
““Deterministic Deterministic modelingmodeling””

 aka “hand execution”

Queueing Queueing theorytheory
 Often gives fast and useful approximations
 Math gets big fast
 Math sensitive to assumptions

» May be unrealistic (aka “wrong”)

SimulationSimulation
 Workload model or trace-driven
 GIGO hazard (either way)

15-410, F'0734

Summary

Round-robin is ok for simple casesRound-robin is ok for simple cases
 Certainly 80% of the conceptual weight
 Certainly good enough for P3

 Speaking of P3...
» Understand preemption, don't evade it

““RealReal”” systems systems
 Some multi-level feedback
 Probably some soft real-time

