15-410

"...The cow and Zaphod..."
"...The only winning move is not to play..."

Virtual Memory #2.5 Oct. 12, 2007

Dave Eckhardt
Roger Dannenberg

L19_VM2_5 15-410, F'07

Synchronization

Project 3 Checkpoint 1 – Monday in class!

- Meet downstairs in 5th floor cluster
 - Probably Wean 5207
 - Look for e-mail on when your group should arrive
- Demo a program of our choice
- Talk to us about your progress
- Attendance is mandatory (you have no conflict...)

Experimental P2 survey

Checkpoint 2 date

Outline

Last time

- Meaning of PTE flags
- Partial memory residence (demand paging) in action
- The task of the page fault handler

Today

- Big speed hacks
- The mysterious TLB
- Sharing memory regions & files

Upcoming

Page replacement policies

Speed Hacks

COW

ZFOD (Zaphod?)

Memory-mapped files

What msync() is supposed to be used for...

 $oldsymbol{4}$

Copy-on-Write

fork() produces two very-similar processes

Same code, data, stack

Expensive to copy pages

- Many will never be modified by new process
 - Especially in fork(), exec() case

Share physical frames instead of copying?

Easy: code pages –read-only

Dangerous: stack pages!

Copy-on-Write

Simulated copy

- Copy page table entries to new process
- Mark PTEs read-only in old & new
- Done! (saving factor: 1024)
 - Simulation is excellent as long as process doesn't write...

Copy-on-Write

Simulated copy

- Copy page table entries to new process
- Mark PTEs read-only in old & new
- Done! (saving factor: 1024)
 - Simulation is excellent as long as process doesn't write...

Making it real

- Process writes to page (Oops! We lied...)
- Page fault handler responsible
 - Kernel makes a copy of the shared frame
 - Page tables adjusted
 - » ...each process points page to private frame
 - » ...page marked read-write in both PTEs

Example Page Table

Copy-on-Write of Address Space

Memory Write ⇒ **Permission Fault**

Copy Into Blank Frame

Adjust PTE frame pointer, access

Zero Pages

Very special case of copy-on-write

ZFOD = "Zero-fill on demand"

Many process pages are "blank"

- All of BSS
- New heap pages
- New stack pages

Have one system-wide all-zero frame

- Everybody points to it
- Logically read-write, physically read-only
- Reads of zeros are free
- Writes cause page faults & cloning

Double Trouble? <u>Triple</u> Trouble?

Program requests memory access

Processor makes two memory accesses!

- Split address into page number, intra-page offset
- Add to page table base register
- Fetch page table entry (PTE) from memory
- Add frame address, intra-page offset
- Fetch data from memory

Can be worse than that...

- x86 Page-Directory/Page-Table
 - Three physical accesses per virtual access!

Translation Lookaside Buffer (TLB)

Problem

Cannot afford double/triple memory latency

Observation - "locality of reference"

- Program often accesses "nearby" memory
- Next instruction often on same page as current instruction
- Next byte of string often on same page as current byte
- ("Array good, linked list bad")

Solution

- Page-map hardware caches virtual-to-physical mappings
 - Small, fast on-chip memory
 - "Free" in comparison to slow off-chip memory

Approach

- Remember the most-recent virtual-to-physical translation
 - (obtained from, e.g., Page Directory + Page Table)
- See if next memory access is to same page
 - If so, skip PD/PT memory traffic; use same frame
 - 3X speedup, cost is two 20-bit registers
 - » "Great work if you can get it"

TLB "Hit"

TLB "Miss"

TLB "Refill"

Can you think of a "pathological" instruction?

What would it take to "break" a 1-entry TLB?

How many TLB entries do we need, anyway?

TLB vs. Context Switch

After we've been running a while...

...the TLB is "hot" - full of page⇒frame translations

Interrupt!

- Some device is done...
- ...should switch to some other task...
- ...what are the parts of context switch, again?
 - General-purpose registers
 - **.**..?

TLB vs. Context Switch

After we've been running a while...

...the TLB is "hot" - full of page⇒frame translations

Interrupt!

- Some device is done...
- ...should switch to some other task...
- ...what are the parts of context switch, again?
 - General-purpose registers
 - Page Table Base Register (x86 calls it ...?)
 - ...?

TLB vs. Context Switch

After we've been running a while...

...the TLB is "hot" - full of page⇒frame translations

Interrupt!

- Some device is done...
- ...should switch to some other task...
- ...what are the parts of context switch, again?
 - General-purpose registers
 - Page Table Base Register (x86 calls it ...?)
 - Entire contents of TLB!!

» (why?)

x86 TLB Flush

1. Declare new page directory (set %cr3)

- Clears every entry in TLB (whoosh!)
 - Footnote: doesn't clear "global" pages...
 - » Which pages might be "global"?

2. INVLPG instruction

- Invalidates TLB entry of one specific page
- Is that more efficient or less?

x86 Type Theory -Final Version

Instruction ⇒ segment selector

[PUSHL specifies selector in %SS]

Process ⇒ (selector ⇒ (base,limit))

[Global,Local Descriptor Tables]

Segment base, address ⇒ linear address

TLB: linear address ⇒ physical address, or...

Process ⇒ (linear address high ⇒ page table)

[Page Directory Base Register, page directory indexing]

Page Table: linear address middle ⇒ frame address

Memory: frame address, offset ⇒ ...

Is there another way?

That seems really complicated

- Is that hardware monster really optimal for every OS and program mix?
- "The only way to win is not to play?"

Is there another way?

- Could we have no page tables?
- How would the hardware map virtual to physical???

Software-loaded TLBs

Reasoning

- We need a TLB "for performance reasons"
- OS defines each process's memory structure
 - Which memory regions, permissions
 - Lots of processes share frames of /bin/bash!
- Hardware page-mapping unit imposes its own ideas
- Why impose a semantic middle-man?

Approach

- TLB contains subset of mappings
- OS knows the rest
- TLB miss generates special trap
- OS quickly fills in correct v⇒p mapping

Software TLB features

Mapping entries can be computed many ways

- Imagine a system with one process memory size
 - TLB miss becomes a matter of arithmetic

Mapping entries can be "locked" in TLB

- Good idea to lock the TLB-miss handler's TLB entry...
- Great for real-time systems

Further reading

http://yarchive.net/comp/software_tlb.html

Software TLBs

PowerPC 603, 400-series (but NOT 7xx/9xx)

15-410, F'07

TLB vs. Project 3

x86 has a nice, automatic TLB

- Hardware page-mapper fills it for you
- Activating new page directory flushes TLB automatically
- What could be easier?

It's not totally automatic

Something "natural" in your kernel may confuse it...

TLB debugging in Simics

- logical-to-physical (I2p) command
- cpu0_tlb.info, cpu0_tlb.status
 - More bits "trying to tell you something"
- [INVLPG issues with Simics 1. Simics 2, 3 seem ok]

15-410, F'07

Summary

Big speed hacks

Copy-on-write, zero-fill on demand

The mysterious TLB

No longer mysterious

Upcoming

- Sharing memory regions & files
- Page replacement policies