
15-410, F'071

Virtual Memory #2.5
Oct. 12, 2007

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L19_VM2_5

15-410
“...The cow and Zaphod...”

“...The only winning move is not to play...”

15-410, F'072

Synchronization

Project 3 Checkpoint 1 – Monday in class!Project 3 Checkpoint 1 – Monday in class!
� Meet downstairs in 5 th floor cluster

� Probably Wean 5207
� Look for e-mail on when your group should arrive

� Demo a program of our choice
� Talk to us about your progress
� Attendance is mandatory (you have no conflict...)

Experimental P2 surveyExperimental P2 survey

Checkpoint 2 dateCheckpoint 2 date

15-410, F'073

Outline

Last timeLast time
� Meaning of PTE flags
� Partial memory residence (demand paging) in action
� The task of the page fault handler

TodayToday
� Big speed hacks
� The mysterious TLB
� Sharing memory regions & files

UpcomingUpcoming
� Page replacement policies

15-410, F'074

Speed Hacks

COWCOW

ZFOD (Zaphod?)ZFOD (Zaphod?)

Memory-mapped filesMemory-mapped files
� What msync() is supposed to be used for...

15-410, F'075

Copy-on-Write

fork() produces two fork() produces two veryvery -similar processes-similar processes
� Same code, data, stack

Expensive to copy pagesExpensive to copy pages
� Many will never be modified by new process

� Especially in fork(), exec() case

ShareShare physical frames instead of copying? physical frames instead of copying?
� Easy: code pages – read-only
� Dangerous: stack pages!

15-410, F'076

Copy-on-Write

SimulatedSimulated copy copy
� Copy page table entries to new process
� Mark PTEs read-only in old & new
� Done! (saving factor: 1024)

� Simulation is excellent as long as process doesn't write...

15-410, F'077

Copy-on-Write

SimulatedSimulated copy copy
� Copy page table entries to new process
� Mark PTEs read-only in old & new
� Done! (saving factor: 1024)

� Simulation is excellent as long as process doesn't write...

Making it realMaking it real
� Process writes to page (Oops! We lied...)
� Page fault handler responsible

� Kernel makes a copy of the shared frame
� Page tables adjusted

» ...each process points page to private frame
» ...page marked read-write in both PTEs

15-410, F'078

Example Page Table

Virtual Address

stack

code

data

Page table

f029VRW
f237VRX

f981VRW

15-410, F'079

Copy-on-Write of Address Space

stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

15-410, F'0710

Memory Write � Permission Fault

stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

15-410, F'0711

Copy Into Blank Frame

stack
stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

15-410, F'0712

Adjust PTE frame pointer, access

stack
stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRW

P0

P9

f029VRWWWWWWWWW
f237VRX

f982VRW

15-410, F'0713

Zero Pages

Very special case of copy-on-writeVery special case of copy-on-write
� ZFOD = “Zero-fill on demand”

Many process pages are “blank”Many process pages are “blank”
� All of BSS
� New heap pages
� New stack pages

Have one Have one system-widesystem-wide all-zero frame all-zero frame
� Everybody points to it
� Logically read-write, physically read-only
� Reads of zeros are free
� Writes cause page faults & cloning

15-410, F'0714

Double Trouble? Triple Trouble?

Program requests memory accessProgram requests memory access

Processor makes Processor makes twotwo memory accesses! memory accesses!
� Split address into page number, intra-page offset
� Add to page table base register
� Fetch page table entry (PTE) from memory
� Add frame address, intra-page offset
� Fetch data from memory

Can be worse than that...Can be worse than that...
� x86 Page-Directory/Page-Table

� Three physical accesses per virtual access!

15-410, F'0715

Translation Lookaside Buffer
(TLB)
ProblemProblem

� Cannot afford double/triple memory latency

Observation - “locality of reference”Observation - “locality of reference”
� Program often accesses “nearby” memory
� Next instruction often on same page as current

instruction
� Next byte of string often on same page as current b yte
� (“Array good, linked list bad”)

SolutionSolution
� Page-map hardware caches virtual-to-physical mappings

� Small, fast on-chip memory
� “Free” in comparison to slow off-chip memory

15-410, F'0716

Simplest Possible TLB

ApproachApproach
� Remember the most-recent virtual-to-physical transl ation

� (obtained from, e.g., Page Directory + Page Table)
� See if next memory access is to same page

� If so, skip PD/PT memory traffic; use same frame
� 3X speedup, cost is two 20-bit registers

» “Great work if you can get it”

15-410, F'0717

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

15-410, F'0718

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

15-410, F'0719

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

f34802A5

15-410, F'0720

TLB “Hit”

Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
........

f08
f07
....

Page
Directory

f34802A5

802A5

15-410, F'0721

TLB “Miss”

Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
........

f08
f07
....

Page
Directory

f34802A5

802A4

15-410, F'0722

TLB “Refill”

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

f25802A4

15-410, F'0723

Simplest Possible TLB

Can you think of a “pathological” instruction?Can you think of a “pathological” instruction?
� What would it take to “break” a 1-entry TLB?

How many TLB entries do we need, anyway?How many TLB entries do we need, anyway?

15-410, F'0724

TLB vs. Context Switch

After we've been running a while...After we've been running a while...
� ...the TLB is “hot” - full of page �frame translations

Interrupt!Interrupt!
� Some device is done...
� ...should switch to some other task...
� ...what are the parts of context switch, again?

� General-purpose registers
� ...?

15-410, F'0725

TLB vs. Context Switch

After we've been running a while...After we've been running a while...
� ...the TLB is “hot” - full of page �frame translations

Interrupt!Interrupt!
� Some device is done...
� ...should switch to some other task...
� ...what are the parts of context switch, again?

� General-purpose registers
� Page Table Base Register (x86 calls it ...?)
� ...?

15-410, F'0726

TLB vs. Context Switch

After we've been running a while...After we've been running a while...
� ...the TLB is “hot” - full of page �frame translations

Interrupt!Interrupt!
� Some device is done...
� ...should switch to some other task...
� ...what are the parts of context switch, again?

� General-purpose registers
� Page Table Base Register (x86 calls it ...?)
� Entire contents of TLB!!

» (why?)

15-410, F'0727

x86 TLB Flush

1. Declare new page directory (set %cr3)1. Declare new page directory (set %cr3)
� Clears every entry in TLB (whoosh!)

� Footnote: doesn't clear “global” pages...
» Which pages might be “global”?

2. INVLPG instruction2. INVLPG instruction
� Invalidates TLB entry of one specific page
� Is that more efficient or less?

15-410, F'0728

x86 Type Theory – Final Version
Instruction Instruction �� segment selector segment selector

� [PUSHL specifies selector in %SS]

Process Process �� (selector (selector �� (base,limit)) (base,limit))
� [Global,Local Descriptor Tables]

Segment base, address Segment base, address �� linear address linear address

TLB: linear address TLB: linear address �� physical address, or... physical address, or...

Process Process �� (linear address high (linear address high �� page table) page table)
� [Page Directory Base Register, page directory index ing]

Page Table: linear address middle Page Table: linear address middle �� frame address frame address

Memory: frame address, offset Memory: frame address, offset ��

15-410, F'0729

Is there another way?

That seems That seems really complicatedreally complicated
� Is that hardware monster really optimal for every O S and

program mix?
� “The only way to win is not to play?”

Is there another way?Is there another way?
� Could we have no page tables?
� How would the hardware map virtual to physical???

15-410, F'0730

Software-loaded TLBs

ReasoningReasoning
� We need a TLB “for performance reasons”
� OS defines each process's memory structure

� Which memory regions, permissions
� Lots of processes share frames of /bin/bash!

� Hardware page-mapping unit imposes its own ideas
� Why impose a semantic middle-man?

ApproachApproach
� TLB contains subset of mappings
� OS knows the rest
� TLB miss generates special trap
� OS quickly fills in correct v �p mapping

15-410, F'0731

Software TLB features

Mapping entries can be computed many waysMapping entries can be computed many ways
� Imagine a system with one process memory size

� TLB miss becomes a matter of arithmetic

Mapping entries can be “locked” in TLBMapping entries can be “locked” in TLB
� Good idea to lock the TLB-miss handler's TLB entry. ..
� Great for real-time systems

Further readingFurther reading
� http://yarchive.net/comp/software_tlb.html

Software TLBsSoftware TLBs
� PowerPC 603, 400-series (but NOT 7xx/9xx)

15-410, F'0732

TLB vs. Project 3

x86 has a nice, automatic TLBx86 has a nice, automatic TLB
� Hardware page-mapper fills it for you
� Activating new page directory flushes TLB automatic ally
� What could be easier?

It's not It's not totallytotally automatic automatic
� Something “natural” in your kernel may confuse it.. .

TLB debugging in SimicsTLB debugging in Simics
� logical-to-physical (l2p) command
� cpu0_tlb.info, cpu0_tlb.status

� More bits “trying to tell you something”
� [INVLPG issues with Simics 1. Simics 2, 3 seem ok]

15-410, F'0733

Summary

Big speed hacksBig speed hacks
� Copy-on-write, zero-fill on demand

The mysterious TLBThe mysterious TLB
� No longer mysterious

UpcomingUpcoming
� Sharing memory regions & files
� Page replacement policies

