
Project 3: Writing a Kernel From Scratch
15-410 Operating Systems

October 7, 2006

Contents

1 Introduction 4
1.1 Overview . 4
1.2 Goals . 4
1.3 Technology Disclaimer. 4
1.4 Important Dates. 5
1.5 Groups. 5
1.6 Grading . 5
1.7 Interactions between Project 3 and Project 4. 6
1.8 Hand-in . 7

2 Hardware Primitives 7
2.1 Privilege Levels. 7
2.2 Segmentation. 7
2.3 Special Registers. 8

2.3.1 The Segment Selector Registers. 8
2.3.2 The EFLAGS Register. 8
2.3.3 Control Registers. 8
2.3.4 The Kernel Stack Pointer. 9
2.3.5 C interface . 9

2.4 Paging. 9
2.5 The Layout of Physical Memory. 11

3 The Boot Process 11

4 Device Drivers and Interrupt Handlers 12
4.1 Interrupts, Faults, and Exceptions. 12

4.1.1 Hardware Interrupts. 12
4.1.2 Software Interrupts. 12
4.1.3 Faults and Exceptions. 12
4.1.4 Interrupt Handler Flavors. 13
4.1.5 Writing an Interrupt Handler. 13
4.1.6 Interrupts and Preemption. 13

4.2 Device Drivers . 14

1

4.2.1 Floating-Point Unit. 14

5 Context Switching and Scheduling 15
5.1 Context Switching . 15
5.2 Scheduling . 16
5.3 Scheduling, Sleeping, and Synchronization. 16
5.4 Convolution. 17

6 System Calls 17
6.1 The System Call Interface. 17
6.2 Validation . 17
6.3 Specific System Calls. 18

7 Building and Loading User Programs 18
7.1 Building User Programs. 18
7.2 Loading User Programs. 19

8 The Programming Environment 19
8.1 Kernel Programming. 19

8.1.1 A Simple C Library. 19
8.1.2 Processor Utility Functions. 21
8.1.3 Build Infrastructure. 22

8.2 User Programming. 22
8.3 Simulator versus Reality. 22

9 Hints on Implementing a Kernel 23
9.1 Code Organization. 23

9.1.1 Encapsulation. 23
9.1.2 Synchronization . 24
9.1.3 Method tables. 24
9.1.4 Embedded Traversal Fields. 25
9.1.5 Avoiding the malloc()-blob Monster. 26
9.1.6 List Traversal Macros. 26
9.1.7 Accessing User Memory. 26

9.2 Task/Thread Initialization. 26
9.3 Thread Exit . 27
9.4 Kernel Initialization. 27
9.5 Memory Management Operations. 28

2

10 Debugging 28
10.1 Requests for Help. 28
10.2 Debugging Strategy. 29
10.3 Kernel Debugging Tools. 29
10.4 User Task Debugging. 30
10.5 Test Programs. 31

11 Checkpoints 31
11.1 Checkpoint One. 31
11.2 Checkpoint Two. 32
11.3 Checkpoint Three. 32
11.4 Week Four. 32
11.5 Week Five. 32

12 Strategy Suggestions 33

13 Plan of Attack 34

3

1 Introduction

This document will serve as a guide in completing the 15-410 kernel project. The goal of this
document is to supply enough information to complete the project without getting bogged down
in implementation details. Information contained in lecture notes, or in the Intel documentation
will be repeated here only sparingly, and these sources willoften be referenced, so keep them
handy. Good luck!

1.1 Overview

This project will require the design and implementation of aUnix-like kernel. The 410 kernel
will support multiple virtual memory address spaces via paging, preemptive multitasking, and a
small set of important system calls. Also, the kernel will supply device drivers for the keyboard,
the console, and the timer.

1.2 Goals

• Acquiring a deep understanding of the operation of a Unix-like kernel through the design
and implementation of one.

• Gaining experience reading technical specifications such as the Intel documentation.

• Debugging kernel code. Virtual memory, interrupts, and concurrency concerns add
complexity to the debugging process.

• Working with a partner. Learning how to program as a team (Pair Programming, division
of labor, etc.). Using source control.

1.3 Technology Disclaimer

Because of the availability, low cost, and widespread use ofthe x86 architecture, it was chosen
as the platform for this sequence of projects. As its creator, Intel Corporation has provided much
of the documentation used in the development of these projects. In its literature Intel uses and
defines terms like interrupt, fault, etc.. On top of this the x86 architecture will be the only platform
used in these projects.

The goal of this project set is certainly not to teach the idiosyncrasies of the x86 architecture
(or Intel’s documentation). That said, it will be necessaryto become accustomed to the x86 way
of doing things, and the Intel nomenclature, for the purposes of completing this project set. Just
keep in mind that the x86 way of doing things is not the only wayof doing things. It is the price
to be paid for learning the principles of operating systems on a real world system instead of a
simulated architecture.

4

1.4 Important Dates

• Friday, October 6th: Project 3 begins.

• Monday, October 16th: Checkpoint 1 due (in-cluster demo).

• Monday, October 23rd: Checkpoint 2 due (in-cluster demo).

• Friday, November 17th: Project 3 due.

1.5 Groups

The kernel project is a group assignment. You should alreadybe in a group of two from the
previous project. If you are not in a group, or you are having other group difficulties, send email
to staff-410@cs.cmu.edu. If you experienced partner difficulties during the previous project, it
will be very important toresolvethem in the first week of the kernel project. In order to do well
on this project, you will need to workmoreclosely and productively with your partner than was
true for the thread library project. If things are on a downward trend, that’s unlikely to happen.
One particular thing to be wary of: if you feel that you wrote the vast majority (say, 85%) of your
group’s Project 2, giveseriousconsideration to seeking help from the course instructors.If you
involve usearly in Project 3 we may be able to suggest ways to increase the effectiveness of your
collaboration. It’s ok if it took a while for your Project 2 collaboration to get off to a good start,
but the happiness curve should be increasing toward the end of Project 2–you’ll probably need
further improvement for Project 3 to go well. If instead it fell rapidly near the end, you should
probably contact us.

In order for you to do well in this class, it will be important f or you to read and
understand your partner’s code. We strongly suggest that you schedule time for reading
and discussing each other’s code at least twice weekly.

1.6 Grading

The primary criteria for grading are correctness, performance, design, and style.
A correct kernel implements the provided specification. Correctness also includes robustness.

A robust kernel does not crash (no matter what instructions are executed by user code), handles
interesting corner cases correctly, and recovers gracefully from errors.

For the purposes of this class, performance refers mainly tohow preemptible your kernel is
(see Section4.1.6). Also, you should avoid standard pitfalls related to putting threads to sleep (see
Section5.3). Preemptibility and sleep/wakeup will represent approximately 10% of the project
grade.

We may fuss about code which takesmuchlonger than it needs to. For example, if aneasy
O(1) algorithm exists, don’t use an O(n) algorithm which requires the same amount of code–this
will typically indicate carelessness. On the other hand, wearenot requiring you to use splay trees
or even hash tables where a linked list is appropriate or at least defensible. See Section9.1.1.

5

A well designed kernel is organized in an intuitive and straightforward way. Functionality is
separated between different source files. Global variablesare used when appropriate (they are
more appropriate in OS kernels than in most programs), but not to excess (basically, consider the
correct scope). Appropriate data structures are used when needed. When practical, data structure
implementations are hidden behind an appropriate interface (see Section9.1.1below).

A kernel with good style is readable. Some noted deviations from what may be generally
considered to be good style will be penalized. Also, poorly commented, hard-to-read code will be
penalized, as will a project that does not follow the prescribed build process. Overall, readability,
structure, and maintainability issues will form approximately 10% of the project grade.

Please note that it is the considered opinion of the course staff that inline assembly code
(asm()), even more than preprocessor macros, has enough defects that its use must always be
supported by a conscious argument. For example, once you leave CMU you will probably write
code which must run on multiple hardware platforms. This requirement plus inline assembly
language immediately results in an#ifdef explosion. Also, unless you use the “long form”
of asm(), which correctly declares to the compiler the C-language effects of your assembly
code, you leave yourself open to the substantial risk that a different compiler version, different
compilation flags, or even minor changes to your C code may have disastrous interference effects.
It is almost always better to make a procedure call to assembly code in a.S file.

Your score will be based on a mixture of test suite results andcode comments made by a
member of the course staff. In addition, we intend to schedule a 30-minute interview/de-briefing
session with each group. In order to avoid disappointing grade surprises on the kernel project,
you may wish to consult the “Grades” section of the syllabus.While the exact grading criteria
and cut-offs differ by semester, turning in a kernel which passes all tests we provide doesnot
imply an “A.”

While we do not require you to implement copy-on-write or zero-fill-on-demand, many
students choose to implement one or the other because it seems more professional. While we
concur with the sentiment, please don’t let a slick COW implementation (or another exotic
option such as a splay-tree scheduler) stop you from gettingcontext switch to be clean and pure
and being able to cleanly put threads to sleep and re-awaken them. Implementing ZFOD is
dramatically simpler than implementing COW and can still bequite satisfying.

In order for us to run the test suite your kernel mustnotdrop into the debugger as it is booting,
or any other time in the course of a test, as that will result inthe test failing. In addition, the shell
must work and you must properly implement thehalt() system call for the tests to run properly.

1.7 Interactions between Project 3 and Project 4

It is likely that groups will not be permitted to do Project 4 unless they complete Project 3
satisfactorily. Detailed go/no-go criteria will be made available to you near the end of Project 3,
but your mental model should be that you will need to pass 80% of a test suite which we will
provide you with.

Also, Project 4 will probably center on enhancing your Project 3 kernel. This means you will
probably need to revise or re-architect some part of your solution to Project 3. It is probably wise

6

to plan ahead for this by writing clean, modular code which you will be able to understand after
you turn it in.

1.8 Hand-in

The hand-in directories will be created as the due date nears. More specific instructions will be
provided at that time. Subject to later instructions, plan to hand in all source files, header files,
and Makefiles that you write. Plan to keep to yourself disk image files, editor-generated backup
files, log files, etc.

When handed in, your kernel must be runnable!This means that itmust, upon being built
and booted, start runningidle, init, andshell without user intervention. In particular, it must
not drop into the simics debugger. When we run the test suite, there will not be a human present
to continue execution. Thus, the test harness will declare your kernel to have failed the entire
suite.

Also, your kernel should not generate reams oflprintf() debugging messages while
running. Ideally you should adjust the setting of your tracefacility (see Section9.1) so that
it generatesnomessages, but in any case the normal loading, execution, andexiting of a program
should not generate more than 20 lines ofkernel.log output.

2 Hardware Primitives

2.1 Privilege Levels

The x86 architecture supports four privilege levels, PL0 through PL3. Lower privilege numbers
indicate greater privilege. The kernel will run at PL0. Usercode will run at PL3.

2.2 Segmentation

A segment is simply a region of the address space. Two notableproperties can be associated with
a segment: the privilege level, and whether the segment contains code, stack, or data. Segments
can be defined to span the entire address space.

The 410 kernel will use segmentation as little as possible. The x86 architecture requires
some use of segmentation, however. Installing interrupt handlers, and managing context switch
requires some understanding of segmentation.

In the 410 kernel, there will be four segments. These four segments will each span the entire
address space. Two of them will require that the privilege level be set to PL0 to be accessed, and
two will require that the privilege level be set to PL3 or lower to be accessed. For each pair of
segments, one will be code and one will be data.

7

2.3 Special Registers

This project requires an understanding of some of the x86 processor data structures. This section
will cover some important structures that the kernel must manipulate in order to function properly.

2.3.1 The Segment Selector Registers

There are six segment selector registers:%cs, %ss, %ds, %es, %fs, and%gs. A segment selector is
really an index into one of two processor data structures called the Global Descriptor Table (GDT)
and Local Descriptor Table (LDT). These tables are where thesegments are actually defined. The
provided startup code sets up segment descriptors in the GDT, but it is the responsibility of the
kernel to have the correct values in the segment selector registers on entering and leaving the
kernel. The code segment selector for the currently runningthread is stored in%cs. The stack
segment selector for the currently running thread is storedin %ss. It is possible to specify up
to four data segment selectors. They are%ds through%gs. The code segment selector is used
to access instructions. The stack segment selector is used in stack related operations (i.e.,PUSH,
POP, etc.). The data segment selectors are used in all other operations that access memory.

On entering thekernel main() function, the kernel and user segments have already been
installed into the GDT. When a user thread is started, user level code, stack, and data segment
selectors need to be specified and loaded into the segment selector registers. When a user thread
takes an interrupt, the code and stack segment selector registers will be saved automatically. The
data segment selector registers and the general purpose registers will not be saved automatically,
however.

For more information on the GDT and segmentation please review the relevant lecture notes
and consult your textbook, sections 2.1, 2.4, and 3.2 ofintel-sys.pdf, and the segmentation
handout on the course web site.

2.3.2 The EFLAGS Register

The EFLAGS register controls some important processor state. It will be necessary to
provide the correct value for theEFLAGS register when starting the first user thread, so it
is important to understand its format. TheEFLAGS register is discussed in section 2.3 of
intel-sys.pdf. 410kern/lib/inc/x86/eflags.h contains useful definitions. The bootstrap
process setsEFLAGS to an appropriate value, available to you via theget eflags() macro from
410kern/lib/inc/x86/proc reg.h, for your kernel execution. Before entering user mode you
will need to arrange for bit 1 (“reserved”) to be 1 and alignment checking to be off. Also, after
studying what they do, arrange for theIF andIOPL KERNEL bits to be set appropriately. The first
method you think of for doing this may not be the right method.

2.3.3 Control Registers

• Control Register Zero (%cr0): This control register contains the most powerful system
flags. The 410 kernel will only be concerned with bit 31, whichactivates paging when set,

8

and deactivates it when unset. Paging is discussed below. Donot modify the state of any
of the other bits.

• Control Register One (%cr1): This control register is reserved and should not be touched.

• Control Register Two (%cr2): When there is a page fault,%cr2 will contain the address
that caused the fault. This value will be needed by the page fault handler.

• Control Register Three (%cr3): This control register is sometimes known as the Page
Directory Base Register (PDBR). It holds the physical address of the current page directory
in its top 20 bits. Bits 3 and 4 control some aspects of cachingand should both be unset.
The%cr3 register will need to be updated when switching address spaces. Writing to the
%cr3 register invalidates entries for all pages in the TLB not marked global.

• Control Register Four (%cr4): This control register contains a number of extension flags
that can be safely ignored by the 410 kernel. Bit 7 is the Page Global Enable (PGE) flag.
This flag should be set for reasons discussed below.

2.3.4 The Kernel Stack Pointer

In the x86 architecture, the stacks for user level code and kernel level code are separate. When
an interrupt occurs that transitions the current privilegelevel of the processor to kernel mode, the
stack pointer is set to the top of the kernel stack. A small amount of context information is then
pushed onto the stack to allow the previously running threadto resume once the interrupt handler
has finished.

The value of the stack pointer when we enter kernel mode is defined by the currently running
task. Tasks are a hardware “process” mechanism provided by the x86 architecture. Your 410
kernel will not use tasks. It is faster to manipulate the process abstraction in software. It is
necessary, however, to define at least one task. This takes place in the bootstrapping code, before
execution of thekernel main() function begins. The provided functionset esp0(), defined in
410kern/lib/x86/seg.c, will specify the beginning value for the kernel stack pointer the next
time a user-to-kernel transition occurs. Since when you call it you are in kernel mode, “nothing
happens” (until much later).

2.3.5 C interface

There are inline assembly macros defined in410kern/lib/inc/x86/proc reg.h, that can be
used to read and write many of the processor’s registers.

2.4 Paging

The x86 architecture uses a two-level paging scheme with four-kilobyte pages. It is also possible
to use larger page sizes, though this is outside the scope of this project. The top level of the paging
structure is called the page directory, while the second level consists of objects called page tables.

9

The formats of page directory entries and page table entriesare very similar. However, their fields
have slightly different meanings. Here is the format of botha page directory entry and a page
table entry.

Entries in both tables use the top twenty bits to specify an address. A page directory entry
specifies the physical memory address of a page table in the top twenty bits. A page table entry
specifies the number of a physical frame in the top twenty bits. Both page tables and physical
frames must be page aligned. An object is page aligned if the bottom twelve bits of the lowest
address of the object are zero.

The bottom twelve bits in a page directory or page table entryare flags.

• Bit 0: This is the present flag. It has the same meaning in both page directories and page
tables. If the flag is unset, then an attempt to read, write, orexecute data stored at an
address within that page (or a page that would be referenced by the not present page table)
will cause a page fault to be generated. On installing a new page table into a page directory,
or framing a virtual page, the present bit should be set.

• Bit 1: This is the read/write flag. If the flag is set, then the page is writable. If the flag is
unset then the page is read-only, and attempts to write will cause a page fault. This flag has
different meanings in page table and page directory entries. See the table on page 136 of
intel-sys.pdf for details.

• Bit 2: This is the user/supervisor flag. If the flag is set, thenthe page is user accessible.
This flag has different meanings in page table and page directory entries. See the table on
page 136 ofintel-sys.pdf for details.

• Bit 3: This is the page-level write through flag. If it is set, write-through caching is enabled
for that page or page table, otherwise write-back caching isused. This flag should be left
unset.

• Bit 4: This is the page-level disable caching flag. If the flag is set, then caching of the
associated page or page table is disabled. This flag should beleft unset.

• Bit 5: This is the accessed flag. It is set by the hardware when the page pointed to by a
page table entry is accessed. The accessed bit is set in a pagedirectory entry when any of
the pages in the page table it references are accessed. This flag may be ignored by the 410
kernel.

• Bit 6: This is the dirty flag. It is valid only in page table entries. This flag is set by the
hardware when the page referenced by the page table entry is written to. This flag can be
used to implement demand paging. However, this flag may be ignored by the 410 kernel.

• Bit 7: This is the page size flag in a page directory entry, and the page attribute index flag
in a page table entry. Because the 410 kernel uses four kilobyte pages all of the same type,
both of these flags should be unset.

10

• Bit 8: This is the global flag in a page table entry. This flag hasno meaning in a page
directory entry. If the global flag is set in a page table entry, then the virtual-to-physical
mapping will not be flushed from the TLB automatically when writing %cr3. This flag
should be used to prevent the kernel mappings from being flushed on context switches. To
use this bit, the page global enable flag in%cr4 must be set.

• Bits 9, 10, 11: These bits are left available for use by software. They can be used to
implement demand paging. The 410 kernel may ignore these bits.

2.5 The Layout of Physical Memory

Although there are many ways to partition physical memory, the 410 kernel will use the following
model. The bottom 16MB of physical memory (from address 0x00000000 to address 0x00ffffff,
i.e., just underUSER MEM START as defined by410kern/lib/inc/x86/seg.h), is reserved for
the kernel. This kernel memory should appear as the bottom 16MB of each task’s virtual
address space (that is, the virtual-to-physical mapping will be the identity function for the first 16
megabytes; this is known as “direct mapping”, or “V=R” in theIBM mainframe world).

Note that user code should not be able to read from or write to kernel memory, even though it
is resident at the bottom of each user task’s address space. In other words, from the point of view
of user code, memory between 0x00000000 and 0x00ffffff should be just as invalid as any other
memory not part of the text, data, bss, automatic stack, ornew pages()-allocated regions.

The remainder of physical memory, i.e., from 0x01000000 up,should be used
for frames. In 410kern/lib/inc/x86/seg.h is a prototype for a functionint
machine phys frames(void), provided by410kernel/lib/x86/seg.c, which will return
to you the number ofPAGE SIZE-sized frames supported by the simics virtual machine
you will be running on (PAGE SIZE and the appropriatePAGE SHIFT are located in
410kern/lib/inc/page.h). This frame count will include both kernel frames and user memory
frames.

Please note that the memory-allocation functions discussed below (e.g.,malloc()) manage
only kernel virtual pages. You are responsible for defining and implementing an allocator
appropriate for the task of managing free physical frames.

3 The Boot Process

The boot process is somewhat complicated, and it is not necessary to fully understand
it in order to complete this project. To learn more about the boot process, please read
about the GRUB boot loader (http://www.gnu.org/software/grub/). This is the boot
loader that will be used to load the 410 kernel. The 410 kernelcomplies with the
Multiboot specification as defined athttp://www.mcc.ac.uk/grub/multiboot toc.html.
After the boot loader finishes loading the kernel into memory, it invokes the function
multiboot main() in 410kern/lib/multiboot/base multiboot main.c. The support code
in 410kern/lib/multiboot ensures that the 410 kernel follows the Multiboot specification,

11

initializes processor data structures with default values, and calls the 410kernel main()
function.

4 Device Drivers and Interrupt Handlers

Your work on Project 1 provided you with most of the interrupt-handling knowledge necessary
for the kernel project. In this section we will briefly cover ways in which Project 3 demands more
or different treatment.

4.1 Interrupts, Faults, and Exceptions

The Interrupt Descriptor Table (IDT) contains entries for hardware device interrupts (covered
in Project 1), software interrupts (which you invoked in Project 2), and exception handlers.
Exceptions are conditions in the processor which are usually unintended and must be addressed.
Page faults, divide-by-zero, and segmentation faults are all types of exceptions.

4.1.1 Hardware Interrupts

You will support the same hardware devices you did in Project1, though your device drivers will
be somewhat more complicated.

4.1.2 Software Interrupts

Hardware interrupts are not the only type of interrupt. Programs can issue software interrupts as
well. These interrupts are often used as a way to transfer execution to the kernel in a controlled
manner, for example during a system call. To perform a software interrupt a user application will
execute a special instruction,INT n, which will cause the processor to execute then’th handler
in the IDT.

In this project, software interrupts will always cause a privilege level change, and you will
need to understand what the CPU hardware places on the stack during a privilege level change
(see page 152–153 ofintel-sys.pdf).

4.1.3 Faults and Exceptions

Please read section 5.3 ofintel-sys.pdf on Exception Classifications. Note that entries exist
in the IDT for faults and exceptions. The 410 kernel should handle the following exceptions:
Division Error, Device Not Present, Invalid Opcode, Alignment Check, General Protection Fault,
and Page Fault. On each of these exceptions, the kernel should report the virtual address of the
instruction that caused the exception, along with any otherrelevant information (i.e., for page
faults which will kill a thread, the program counter, address which generated the fault and the
reason the memory access was invalid).

12

If the kernel decides to kill a thread due to an exception, this must be done cleanly. In
particular, any kernel resources related to the thread mustbe reclaimed. In general, your kernel
should treat the exception as if the thread had invokedexit(-2), including, if necessary, the
standard mechanisms related to task exit.

4.1.4 Interrupt Handler Flavors

As mentioned previously, an x86 processor uses the IDT to findthe address of the proper interrupt
handler when an interrupt is issued. To install interrupt, fault, and exception handlers, entries
must be installed in the IDT.

An IDT entry can be one of three different types: a task gate, an interrupt gate, or a trap
gate. Task gates make use of the processor’s hardware task switching functionality, and so are
inappropriate for the 410 kernel. Interrupt gates and trap gates differ in that an interrupt gate
causes interrupts to be disabled before the handler begins execution. You should think about
which kind of gate is appropriate for system calls, and also which kind is appropriate for your
hardware device drivers. Some reasonable designs require amixture of interrupt gates and trap
gates. One question which might guide your thinking is, “What happens if a timer interrupt
interrupts my keyboard interrupt handler?” It is probably agood idea for your documentation to
explain which gate flavors you used for what, and why.

The format of the trap gate is on page 151 ofintel-sys.pdf. Note that regardless of the
type of the gate, the descriptor is 64 bits long. To find out thebase address of the IDT, the
instruction SIDT can be used. A C wrapper around this instruction is defined in the support code
in 410kern/lib/x86/seg.c. The prototype can be found in410kern/lib/inc/x86/seg.h.

The purpose of some of the fields of a trap gate are not obvious.The DPL is the privilege
level required to execute the handler. The offset is the virtual address of the handler. The
Segment Selector should be set to the segment selector for the target code segment. This is
KERNEL CS SEGSEL defined in410kern/lib/inc/x86/seg.h.

4.1.5 Writing an Interrupt Handler

As mentioned above, when the processor receives an interrupt it uses the IDT to start executing
the interrupt handler. Before the interrupt handler executes, however, the processor pushes
some information onto the stack so that it can resume its previous task when the handler has
completed. The exact contents and order of this informationis presented on pages 152–153 of
intel-sys.pdf.

You will probably wish to save (& later restore) additional information on the stack, such
as general-purpose registers (PUSHA and POPA may be useful; see pages 624 and 576 of
intel-isr.pdf)) and segment registers.

4.1.6 Interrupts and Preemption

The 410 kernel has a number of critical sections. It may be necessary to disable interrupts to
protect these critical sections. Interrupts can be disabled by the macrodisable interrupts()

13

defined in410kern/lib/inc/x86/proc reg.h, or by theCLI instruction. Interrupts can be
enabled by the macroenable interrupts() defined in the same file, or by theSTI instruction.

Our infrastructure for measuring your kernel’s preemptibility during grading requires that the
halt() system call to be implemented (in terms ofSIM halt()). Please don’t overlook this!

Your 410 kernel should be as preemptible as possible. This means that, ideally, no matter
what code sequence is running, whether in kernel mode or usermode, when an interrupt arrives
it can be handled and can cause an immediate context switch ifappropriate. In other words, if an
interrupt signals the completion of an event that some thread is waiting for, it should be possible
for your kernel to suspend the interrupted thread and resumethe waiting thread so that returning
from the interrupt activates the waiting thread rather thanthe interrupted thread.

We will probably assign you a higher grade on Project 3 if yourkernelalwaysswitches to the
waiting thread instead of resuming the interrupted thread (this is not necessarily the right thing to
do for performance reasons, but it will help you design for preemptibility and debug your context
switching).

To do this, you will need to strive to arrange that as much workas possible is performed
within the context of a single thread’s kernel execution environment without dependencies on
other threads. When race conditions with other processes are unavoidable, try to structure your
code so that task/thread switching is disabled for multipleshort periods of time rather than for
one long period of time.

Please avoid any temptation to “fix” preemptibility issues by delegating work to special
“kernel tasks,” especially if they would result in serialization of important system calls. As a
heuristic, you should make sure that multiple invocations of fork() andnew pages() can be
running (and making progress) “simultaneously” (interleaved by clock interrupts).

A portion of your grade will depend on how preemptible your kernel is.

4.2 Device Drivers

Through the system call interface you will expose the functionality provided by a timer driver, a
keyboard driver, and a console driver oddly similar to thoseyou created for Project 1. Since you
and your partner both implemented these drivers, this provides you with an excellent opportunity
to read, review, and discuss each other’s code before beginning to write new code together. Please
take advantage of this opportunity!

4.2.1 Floating-Point Unit

Your processor comes equipped with a floating-point co-processor capable of amazing feats of
approximation at high speed. However, for historical reasons, the x86 floating-point hardware is
baroque. We will not require you to manage the user-visible state of the floating-point unit.

The bootstrapping code we provide will initialize the floating-point system so that any attempt
to execute floating-point instructions will result in a “device not present” exception (see the Intel
documentation for the exception number). You should do something reasonable if this occurs,
i.e., kill the offending user thread (optional challenge: support floating-point).

14

Please note that since the floating-point hardware is not being managed correctlyyou should
not use floating-point variables or code in your kernel code or user-space test programs.

5 Context Switching and Scheduling

5.1 Context Switching

Context switching is historically a conceptually difficultpart of this project. In addition, you will
need to considercarefullyhow to mix C and assembly language–there are many ways to do it,
and they vary in quality by at least a factor of two.

The first thing to understand is thatmode switchand context switchare totally different.
Modeswitching is a transition from user mode to kernel mode or thereverse; ingredients include
INT, IRET, and ESP0. Contextswitching is a transition from one thread to another, possibly
in a different task; it doesnot involve INT or IRET– unless you’re doing it wrong! Mode
switching can happen without context switching (e.g.,gettid()), and context switching can
happen with essentially no relationship to mode switching (in a kernel with more I/O facilities,
two threads callingwrite() could stay in kernel mode for quite some time including multiple
context switches back and forth).

In a context switch, the general purpose registers and segment selector registers of one thread
are saved, suspending its execution, and the general purpose registers and segment selector
registers of another thread are loaded, resuming its execution. Also, the address of the page
directory for the thread being switched to is loaded into%cr3.

Note that context switch should reactivate a threadwhere it previously was suspended–in
other words, when a thread is suspended in kernel mode, the job of context switch isnot to “get
the thread back to user space.” To see this, consider what should happen ifmalloc() invokes the
new pages() system call, which tries to lock the kernel’s internal memory allocator, but cannot
immediately do so. The earlier you think about what should happen in this situation, the better
your final context switch code will be.

We suggest you structure your kernel so that there is only onepiece of code which implements
context switching. Our suggestion is based on reading student kernels and observing that multiple
context-switch code paths typically indicate multiple conflicting partial understandings of context
switch. This often means that each one contains a bug. As discussed in the “Yield” lecture, if a
single function performs a context switch, then the point ofexecution for every non-runnable
thread is inside that function and the instruction pointer need not be explicitly saved. We
also suggest that you set things up so there is only “one way back to user space” (rather than
having the scheduler or context switcher invoke distinct code paths to “clean up” afterfork(),
thread fork(), or exec()). If you can’t manage one path, try to keep the count down to two.

It is very unwise to attempt to solve a scheduling or context-switching problem by having
kernel code invoke theINT instruction to get from one place to another. This approach is very
expensive and structurally counterproductive.

When you are designing your context switch infrastructure,it will probably be helpful to
enumerate the situations in which it might be invoked (hint:not just by the timer interrupt

15

handler).
Before a thread runs for the first time, meaningful context will need to be placed on its kernel

stack. A useful tool to set a thread running for the first time is theIRET instruction. It is capable
of changing the code and stack segments, stack pointer, instruction pointer, andEFLAGS register
all in one step. Please see page 153 ofintel-sys.pdf for a diagram of what theIRET instruction
expects on the stack.

5.2 Scheduling

A simple round robin-scheduler is sufficient for the 410 kernel. The running time of the scheduler
should not depend on the number of threads currently in the various queues in the kernel. In
particular, there are system calls that alter the order in which threads run. These calls should not
cause the scheduler to run in anything other than constant expected time (but see Section9.1.1
on “Encapsulation” below).

You should avoid a fixed limit on the number of tasks or threads. In particular, if we were
to run your kernel on a machine with more memory (and/or a larger USER MEM START value), it
should be able to support more tasks and threads. Also, your kernel should respond gracefully
to running out of memory. System calls which would require more memory to execute should
receive error return codes. In the other direction, it is considered legitimate for a Unix kernel to
kill a process any time it is unable to grow its stack (optional challenge: can you do better than
that?).

5.3 Scheduling, Sleeping, and Synchronization

While designing your kernel, you may find yourself tempted toemploy various “tricky”
techniques to avoid actually putting a thread to sleep. Approaches to avoid:

Saved by the bell Instead of actually putting a thread to sleep, busy-wait until the clock interrupt
arrives and invokes your context-switch code for you.

To run or not to run? Construct a deceptive “scheduling queue” containing not only runnable
threads but also threads asleep for fixed time periods and threads blocked indefinitely, thus
requiring the thread scheduler to hunt among decoys for the occasional genuinely runnable
thread.

Yield loop Instead of arranging to be awakened when the world is ready for you, repeatedly
“sleep for a while” by putting yourself at the end of the run queue. Please note that, as we
discussed in class, this approach isguaranteedto never sleep the right amount of time (too
short for N-1 iterations and then too long the last time).

Not now, maybe later? Allow kernel code to be interrupted by devices, but forbid actual context
switching in kernel mode.

16

Of course, you maytemporarilyemploy “quick hacks” during the course of development, but
please be aware that each “trick” on the list above maps directly to having avoided understanding
an important conceptual issue, and this will influence your grade accordingly.

In general, adhere to these principles:

• A thread should not run in kernel mode when it is hopeless (it should stop running when
it’s time to stop running),

• A sleeping thread should not run before it can (probably) do productive work, and

• A sleeping thread should begin running, or at least be markedrunnable,as soon asit can
once again do productive work.

5.4 Convolution

It is certainly possible to write your context switcher in such a way that it contains half of your
scheduler, or your scheduler in such a way that it contains half of your context switcher. Please
avoid these and similar architectures.

6 System Calls

6.1 The System Call Interface

The system call interface is the part of the kernel most exposed to user code. User code will make
requests of the kernel by issuing a software interrupt usingtheINT instruction. Therefore, you
will need to install one or more IDT entries to handle system calls.

The system call boundary protocol (calling convention) will be the same for Project 3 as it
was for Project 2. Interrupt numbers are defined in410user/lib/inc/syscall int.h. Please
make sure your user-space stub library is organized into files according to the guidelines specified
in the “Pebbles Kernel Specification” document. However, inside the kernel, there is no need for
each system call to contribute its own C source file and matching header file. Please lay out your
system calls according to some sensible standard (something between “two files per system call”
and “one monster syscall.c”).

6.2 Validation

Your kernel must verify all arguments passed to system calls, and should return an integer error
code less than zero if any arguments are invalid. The kernelmay notkill a user thread that passes
bad (or inconvenient) arguments to a system call, and itabsolutely may notcrash.

The kernel must verify, using its virtual memory housekeeping information, that every pointer
is valid before it is used. For example, arguments toexec() are passed as a null terminated array
of C-style null terminated strings. Each byte of each stringmust be checked to make sure that

17

it lies in a valid region of memory. The kernel should also ensure that it isn’t “tricked” into
performing illegal memory operations for the user as a result of bad system call arguments.

6.3 Specific System Calls

You will implement the system calls described in thePebbles Kernel Specificationdocument,
which has been updated as a result of comments received during Project 2.

Though this should go without saying, kernels missing system calls are unlikely to meet
with strong approval from the course staff. However, as partof our tireless quest to calibrate
the difficulty of the projects, this semester you arenot required to implementgetchar() and
task exit() for Project 3. You will want to think carefully about the issues associated with
these system calls, however, as there is some chance you willbe asked to implement them in
Project 4.

While implementingreadline(), please try to ensure that you donot context switch to the
invoking thread every time a keyboard interrupt makes a new character available (unless that
character would cause thereadline() operation to complete and un-block the thread). We
realize that this is the opposite of what we asked you to do forProject 1. To see why this makes
sense, observe that if your kernel paged out to disk then a thread’s user-space memory buffer
could be paged out. Paging it in as each character in a long line typed by a slow person arrived
would be wasted effort. Of course, since the shell depends onit, it will be more important for
you to have aworkingreadline() than anidealone.

If you find yourself wanting to implement extra “helpful” semantics in readline(), it
might make sense to walk through some code which usesreadline() to see if your proposed
extensions make sense. If you are thinking of “helpfully” “fixing up” the operation of
readline(), ask yourself what would happen during thenextinvocation...

Please don’t build a “terminal irony” into yourexit() system call: it isnot acceptablefor
exit() to “fail” because your kernel is out of memory...

7 Building and Loading User Programs

7.1 Building User Programs

User programs to be run on the 410 kernel should conform to thefollowing requirements. They
should be ELF formatted binaries such that the only sectionsthat must be loaded by the kernel
are the .text, .rodata, .data, and .bss sections (C++ programs, which have additional sections
for constructors which run before main() and destructors which run after main(), are unlikely to
work).

Programs may be linked against the 410-provided user-spacelibrary, andmust notbe linked
against the standard C library provided on the host system. They should be linked statically, with
the .text section beginning at the lowest address in the useraddress space. The entry point for all
user programs should be themain() function found in410user/tests/crt0.c.

18

7.2 Loading User Programs

The 410 kernel must read program data from a file, and load the data into a task’s address space.
Due to the absence of a file system, user programs will be loaded from large arrays compiled into
a “RAM disk” image included in the kernel executable binary.

We have provided you with a utility,410user/exec2obj, which takes a list of file names
of Pebbles executables and builds a single file,user apps.c, containing one large character
array per executable. It also contains a table of contents the format of which is described in
410kern/lib/inc/exec2obj.h. When a program is executed, your loader will extract the ELF
header and various parts of the executable from the relevantcharacter array and build a runnable
memory image of the program.

Later in the semester, there may be an opportunity to write a file system for the 410 kernel.
To facilitate an easy switch fromexec2obj to a file system, please use thegetbytes() skeleton
found inkern/loader.c: it provides a crude abstraction which can be implemented ontop of
eitheruser apps.c or a real file system.

Support code has also been provided inkern/loader.c to extract the important information
from an ELF-formatted binary.elf check header() will verify that a specified file is an ELF
binary, andelf load helper() will fill in the fields of astruct se (“simplified ELF”) for you.
Once you have been told the desired memory layout for an executable file, you are responsible for
usinggetbytes() to transfer each executable file section to an appropriatelyorganized memory
region. You should zero out areas, if any, between the end of one region and the start of the next.
The bss region should begin immediately after the end of the read/write data region.

Note: the .text and .rodata (read-only data) sections of theexecutable must be loaded into
memory which the task’s threads cannot modify.

8 The Programming Environment

8.1 Kernel Programming

The support libraries for the kernel include a simple C library, a list based dynamic memory
allocator, functions for initializing the processor data structures with default values, and functions
for manipulating processor data structures.

8.1.1 A Simple C Library

This is simply a list of the most common library functions that are provided. For details on using
these functions please see the appropriateman pages. Other functions are provided that are not
listed here. Please see the appropriate header files for a full listing of the provided functions.

Some functions typically found in a C standard I/O library are provided by
410kern/lib/libstdio.a. The header file for these functions is410kern/lib/inc/stdio.h.

• int putchar(int c)

19

• int puts(const char *str)

• int printf(const char *format, ...)

• int sprintf(char *dest, const char *format, ...)

• int snprintf(char *dest, int size, const char *formant, ...)

• int sscanf(const char *str, const char *format, ...)

• void lprintf kern(const char *format, ...)

Some functions typically found in a C library are provided by410kern/lib/libstdlib.a.
The header files for these functions, in410kern/lib/inc, arestdlib.h, assert.h, malloc.h,
andctype.h.

• int atoi(const char *str)

• long atol(const char *str)

• long strtol(const char *in, const char **out, int base)

• unsigned long strtoul(const char *in, const char **out, int base)

• void *malloc(size t size)

• void *calloc(size t nelt, size t eltsize)

• void *realloc(void *buf, size t new size)

• void free(void *buf)

• void smemalign(size t alignment, size t size)

• void sfree(void *buf, size t size)

• void panic(const char *format, ...)

• void assert(int expression)

The functionssmemalign() andsfree() manage aligned blocks of memory. That is, if
alignment is 8, the block of memory will be aligned on an 8-byte boundary. A block of memory
allocated with smemalignmust be freed withsfree(), which requires thesize parameter.
Therefore, you must keep track of the size of the block of memory you allocated. This interface
is useful for allocating things like page tables, which mustbe aligned on a page boundary. By
volunteering to remember the size, you free the storage allocator from scattering block headers
or footers throughout memory, which would preclude it from allocating consecutive pages.
sfree(void* p, int size) frees a block of memory. This blockmusthave been allocated
by smemalign() and it must be of the specified size. Note that these memory allocation facilities

20

operateonlyon memory inside the kernel virtual address range. Of course, functions with similar
names appear in user-space libraries; those functionsneveroperate on kernel virtual memory.

Also, note that what we actually provide you with, as in Project 2, are non-thread-
safe (non-reentrant) versions of the memory-management primitives (malloc() and friends),
with underlined names (e.g.,malloc()). Once your kernel supports preemptive context
switching, you will need to provide thread-safe wrapper routines based on whatever locking and
synchronization primitives you design and implement. But it probably makes sense to get started
with simple “pass-through” wrappers.

The libraries we provide you with include a version ofpanic()which will print out a message
and loop forever. Theassert() macro invokes thispanic() by default. However, if your kernel
provides a differentpanic() (which must match the existing declaration instdlib.h), it will
override the one inlibstdlib.a.

Some functions typically
found in a C string library are provided by410kern/lib/libstring.a. The header file for
these functions is410kern/lib/inc/string.h.

• int strlen(const char *s)

• char *strcpy(char *dest, char *src)

• char *strncpy(char *dest, char *src, int n)

• char *strdup(const char *s)

• char *strcat(char *dest, const char *src)

• char *strncat(char *dest, const char *src, int n)

• int strcmp(const char *a, const char *b)

• int strncmp(const char *a, const char *b, int n)

• void *memmove(void *to, const void *from, unsigned int n)

• void *memset(void *to, int ch, unsigned int n)

• void *memcpy(void *to, const void *from, unsigned int n)

8.1.2 Processor Utility Functions

These functions, declared in410kern/lib/inc/x86/proc reg.h, access and modify processor
registers and data structures. Descriptions of these functions can be found elsewhere in this
document.

• void disable interrupts()

• void enable interrupts()

21

• void set cr3(void *)

• void set cr3 nodebug(void *)

• void set esp0(void *)

• void *get esp0()

• void *sidt()

8.1.3 Build Infrastructure

The providedMakefile takes care of many of the details of compiling and linking thekernel. It
is important, however, to understand how it works. Once you unpack the Project 3 tarball, you
should readREADME andconfig.mk and fill in the latter according to the directions.

It is also important that you pay attention to the directory structure. In particular, files in
410kern and410user should be treated as read-only. While you might occasionally need to
temporarily modify or instrument library routines for debugging purposes, the update process will
overwrite any such changes. When we grade your kernel we willuse the “supported” versions of
those files, so changes you makewill be wiped out.

The Makefile is configured to allow you to choose when updates take effect in order to
provide you with debugging flexibility. However, this meansthat it will be your responsibility to
incorporate support-code changes early enough that you candebug any issues before the project
deadline. Basically, ifmake starts beeping, don’t just ignore it!

8.2 User Programming

User programs which run on your kernel will have access to thesame C library which was
available in Project 2. However, the console output functions will not work until your kernel
implements theprint() system call.

8.3 Simulator versus Reality

While most executions of your kernel will be in thesimics environment, be sure to consider
how your kernel would behave if it were executed on real hardware. In particular,MAGIC BREAK,
lprintf kern(), andSIM halt() all have no effect if your code isn’t running insidesimics.
If your kernel would fail spectacularly in such a situation,your grader will probably notice and
be less impressed than you might wish.

While this is entirely optional, if you wish to try booting your kernel in a non-simics
environment, you have several options:

• A commercial emulation environment such asVMware or Virtual PC

• Other PC hardware simulators (Bochs, QEMU, ...)

22

• Real hardware. If you don’t have access to a rebootable PC with a PS/2 keyboard, you
can try Dr. Eckhardt’s office hours, as he has an easily-rebooted PC. To try it on your own,
merely use the Unixdd command to transfer yourbootfd.img file onto a blank, freshly-
formatted floppy, check to make sure that the floppy drive is inyour BIOS’s boot order,
and try a reboot.

9 Hints on Implementing a Kernel

In this section you will find a variety of suggestions and exhortations. We certainly do not expect
each kernel to follow every suggestion contained herein, but you will probably find at least one of
them attractive enough to implement it, at which point we expect you will judge it to have been a
worthwhile investment of your time.

9.1 Code Organization

• You may wish to invest in the creation of a trace facility. Instead of lprintf() calls scattered
at random through your code, you may wish to set up an infrastructure which allows you to
enable and disable tracing of a whole component at once (e.g., the scheduler) and/or allow
you to adjust a setting to increase or decrease the granularity of message logging.1

• Some eventualities are genuinely fatal in the sense that there is no way to continue operation
of the kernel. If, for example, you happened to notice that one thread had overflowed its
kernel stack onto the kernel stack of another thread, there would be no way to recover a
correct execution state for that thread, nor to free up its resources. In such a situation the
kernel is broken, and your job is no longer to arrange things like return(-1), but instead
to stop execution as fast as possible before wiping out data which could be used to find and
fix the bug in question. You will need to use your judgement to classify situations in to
recoverable ones, which you should detect and recover from,and unrecoverable situations
(such as data structure consistency failures), for which you shouldnot write half-hearted
sort-of-cleanup code.

These considerations may suggest that you make use of theassert() macro facility
provided by410user/lib/inc/assert.h and410kern/lib/inc/assert.h.

• Avoid common coding mistakes. Be aware thatgcc will not warn about possible unwanted
assignments inif, andwhile statements. Also, note the difference between!foo->bar,
and!(foo->bar). Practicing Pair Programming can help avoid these kinds of mistakes.

9.1.1 Encapsulation

Instead of typing linked-list traversal code 100 times throughout your kernel, thus firmly and
eternally committing yourselves to a linear-time data structure, you should attempt to encapsulate.

1While it is not rare for a kernel to log messages using impolite linguistic constructs, itis rare for this to improve
the kernel’s reception with course staff.

23

Don’t think of a linked list of threads; think of sets or groups of threads: live, runnable, etc.
Likewise, don’t write a 2,000-line page fault handler. Instead of ignoring the semantic

properties shared by pages within a region, use those properties to your advantage. Write smaller
page-fault handlers which encapsulate the knowledge necessary to handlesomepage faults. You
will probably find that your code is smaller, cleaner, and easier to debug.

Encapsulation can allow you to defer tricky code. Instead ofimplementing the “best” data
structure for a given situation, you may temporarily hide a lower-quality data structure behind an
interface designed to accommodate the better data structure. Once your kernel is stable, you can
go back and “upgrade” your data structures. While we will notgreet a chock-full-of-linked-lists
kernel or a wall-of-small-arrays kernel with cries of joy, and data structure design is an important
part of this exercise, achieving a complete, solid implementation is critical.

9.1.2 Synchronization

If you find yourself needing something sort of like a condition variable,don’t throw away the
modes of thought you learned in Project 2. Instead, use what you learned as an inspiration to
design and implement an appropriate similar abstraction inside your kernel. If you can do this
withoutmalloc()/free() traffic, that might be worthwhile.

Likewise, you have multiple options for ensuring that a given sequence of kernel code is
not interrupted by a conflicting sequence. One approach would be to litter your code with
disable interrupts(), but there are at least two other approaches. Regardless of what you
settle on, you probably want to consider which “flavor” of mutex you need... you might need
something like a counting mutex, or you might need to have “regular” and “special” mutexes.

One way to improve your synchronization design is to pretendyou’re designing your kernel
to run on a multi-processor machine. This will make it clear that interrupt-disabling genuinely
addresses only a small fraction of the synchronization problems a kernel faces.

Another design aid is making sure that your approach scales.For example, it should be easy
to add new device drivers to your kernel without cutting, pasting, and renaming synchronization
code.

9.1.3 Method tables

You canpractice modularity and interface-based design in a language without objects. In C this
is typically done via structures containing function-pointer fields. Here is a brief pseudo-code
summary of one basic approach (other approaches are valid too!):

struct device_ops {
void (*putchar)(void *, char);
int (*getchar)(void *);

};

struct device_ops serial_ops = {
serial_putchar, serial_getchar

24

};

struct device_ops pipe_ops = {
pipe_putchar, pipe_getchar

};

struct device_object {
struct device_ops *opsp;
void *instance_data;

};

void putchar(struct device_object *dp, char c)
{

(dp->opsp->putchar)(dp->instance_data, c);
}

void init(void)
{
struct device_object *d1, *d2;

d1 = new_pipe_object();
d2 = new_serial_object();

putchar(d1, ’1’); /* pipe_putchar(d1->instance_data, ’1’); */
putchar(d2, ’2’); /* serial_putchar(d2->instance_data, ’2’); */

}

9.1.4 Embedded Traversal Fields

Imagine a component is designed around a linked list. It may seem natural to re-invent the Lisp2

“cons cell”:

struct listitem {
struct listitem *next;
void *item_itself;

}

The problem with this approach is that you are likely to callmalloc() twice as often as you
should—once for each item, and once for the list-item structure. Sincemalloc() can be fairly
slow, this is not the best idea, even if you are comfortable dealing with odd outcomes (what if
you can allocate the list item but not the data item, or the other way around?).

Often a better idea is to embed the traversal structure inside the data item:
2or, for you young whippersnappers, ML

25

struct item_itself {
struct item_itself *next;
int field1;
char field2;

}

This cuts yourmalloc() load in half. Also, once you understand C well enough, it is possible
to build on this approach so you can write code (or macros) which will traverse a list of threads
or a list of devices.

Isn’t this an encapsulation violation? It depends...if “everybody knows” that your component
does traversal one way, that is bad. If only your component’sexported methods know the traversal
rules, this can be a very useful approach.

9.1.5 Avoiding the malloc()-blob Monster

There is one particular place in your kernel where the cons-cell approach (aka “little malloc()
blobs”) is particularly inappropriate. Before you commit your kernel to containing thousands of
them, it is probably wise to compute their true size cost. This will probably involve recalling
somemalloc() internals from 15-213, computing roughly how many blobs youintend to create,
and considering the size of the memory pool they will be drawnfrom.

9.1.6 List Traversal Macros

You may find yourself wishing for a way for a PCB to be on multiple lists at the same time
but not relish the thought of writing several essentially identical list traversal routines. Other
languages have generic-package facilities, but C does not.However, it is possible to employ the
C preprocessor to automatically generate a family of similar functions. If you wish to pursue this
approach, you will find a template available invq challenge/variable queue.h.

9.1.7 Accessing User Memory

System calls involve substantial communication of data between user memory and kernel
memory. Of course, these transfers must be carefully designed to avoid giving user code the
ability to crash the kernel.

You will discover that there are many potential hazards. Instead of checking manually for
each hazard every time you read or write some piece of user memory, you may find it useful
to encapsulate this decision-making in some utility routines. If you think about how and when
these routines are used, you may find that you can piggyback these hazard checks onto another
operation, resulting in a pleasant package.

9.2 Task/Thread Initialization

• Task/thread IDs - Each thread must have a unique integer thread ID. Since an integer
allows for over two billion threads to be created before overflowing its range, sequential

26

numbers may simply be assigned to each thread created without worrying about the
possibility of wrap-around – though real operating systemsdo worry about this. The thread
ID must be a small, unique integer, not a pointer.

It is desirable for the data structure used to map a thread ID to its thread control block to be
efficient in space and time. One possible implementation would be a hash table indexed by
thread ID. Time pressure may argue for simpler data structures, which may be employed if
they are appropriately encapsulated.

• thread fork - On afork(), a new task ID is assigned, and kernel state is allocated for
the new schedulable entity, which will use the resources of the invoking thread’s task. The
new thread will have identical contents in all user-visibleregisters except%eax, which will
contain zero in the new thread and the new thread’s ID in the old thread.

• fork() - On afork(), a new task ID is assigned, the user context from the running
parent is copied to the child, and a deep copy is made of the parent’s address space. Since
the CPU relies on the page directory/page table infrastructure to access memory via virtual
addresses, both the source and destination of a copy must be mapped at the same time.
This does not mean that it is necessary to map both entire address spaces at the same time,
however. The copy may be done piece-meal, since the address spaces are already naturally
divided into pages.

Any time you insert a “fake” mapping into a task’s page table you should realize that this
mapping will probably make its way into the TLB and may persist there for an indefinite
period of timeafter you remove the mapping from the page table. See Section2.3.3for one
approach to solving this problem.

• exec() - On anexec(), the stack area for the new program must be initialized. The
stack for a new program typically begins with only one page ofmemory allocated. It is
traditional for the “command line” argument vector to occupy memory above the run-time
stack.

9.3 Thread Exit

You will find that there are subtle issues associated with enabling a thread or task to exit cleanly,
so it’s a good idea to pseudo-code how this will work and what else it will interact with.

As you will discover during your design (or else during your implementation), thread exit will
involve freeing a variety of resources. Furthermore, the efficiency of the system is increased if
you can free resources quickly so they are available for other threads to use. Optional challenge:
how small can you make “zombie threads” in your system? Alternatively, how many of the
thread’s resources can the thread itself free, as opposed torelying on outside help?

9.4 Kernel Initialization

Please consider going through these steps in thekernel main() function.

27

• Initialize the IDT entries for each interrupt that must be handled.

• Clear the console. The initialization routines will leave amess.

• Build a structure to keep track of which physical frames are not currently allocated.

• Build the initial page directory and page tables. Direct mapthe kernel’s virtual memory
space.

• Create and load the idle task. For grading purposes, you may assume that the “file system”
will contain a (single-threaded) executable calledidle which you may run when no other
thread is runnable. Or you may choose to hand-craft an idle program without reference to
an executable file.

• Create and load theinit task. For grading purposes, assume that the “file system” will
contain an executable calledinit which will run the shell (or whatever grading harness
we decide to run). During your development,init should probablyfork() a child that
exec()s the program in410user/progs/shell.c. It is traditional forinit to loop on
wait() in order to garbage-collect orphaned zombie tasks; it is also traditional for it to
react sensibly if the shell exits or is killed.

• Set the first thread running.

N.B. Suggesting thatkernel main implements these functions doesnot imply that it must do
so via straight-line code with no helper functions.

9.5 Memory Management Operations

You will probably find that the x86 virtual memory hardware iscomplex enough to suggest
multiple ways of implementing critical operations such as address-space copying. Your design
should probably assume that invalidating a particular address translation is much cheaper than
invalidating many or all address translationsen masse, which in turn is dramatically cheaper
than disabling paging. Meanwhile, the complexity of an operation should be balanced against
its frequency. Overall, a plan which would disable and enable paging repeatedly in an inner
loop probably represents a serious and unnecessary performance problem (the kind your grader
dislikes).

10 Debugging

10.1 Requests for Help

Please do not ask for help from the course staff with a messagelike this:

I’m getting the default trap handler telling me I have a general protection fault.
What’s wrong?

28

or

I installed my illegal instruction handler and now it’s telling me I’ve executed an
illegal instruction. What’s wrong?

An important part of this class is developing your debuggingskills. In other words, when you
complete this class you should be able to debug problems which you previously would not have
been able to handle.

Thus, when faced with a problem, you need to invest some time in figuring out a way to
characterize it and close in on it so you can observe it in the actual act of destruction. Your reflex
when running into a strange new problem should be to start thinking, not to start off by asking
for help.

Having said that, if a reasonable amount of time has been spent trying to solve a problem and
no progress has been made, do not hesitate to ask a question. But please be prepared with a list
of details and an explanation of what you have tried and ruledout so far.

10.2 Debugging Strategy

In general, when confronted by a mysterious problem, you should begin with a “story” of what
you expectto be happening and measure the system you’re debugging to see where its behavior
diverges from your expectations.

To do this your story must be fairly detailed. For example, you should have a fairly good
mental model of the assembly code generated from a given lineof C code. To understand why “a
variable has the wrong value” you need to know how the variable is initialized, where its value is
stored at various times, and how it moves from one location toanother. If you’re confused about
this, it is probably good for you to spend some time withgcc -S.

Once your “story” is fleshed out, you will need to measure the system at increasing levels of
detail to determine the point of divergence. You will find yourself spending some time thinking
about how to pin your code down to observe whether or not a particular misbehavior is happening.
You may need to write some code to periodically test data-structure consistency, artificially cause
a library routine to fail to observe how your main code responds, log actions taken by your code
and write a log-analyzer perl script, etc.

Please note that the kernel memory allocator is very similarto the allocator written by 15-
213 students in the sense that when the allocator reports an “internal” consistency failure, this
is overwhelminglylikely to mean that the user of some memory overflowed it and corrupted the
allocator’s meta-data. In other words, even though the error is reportedby lmm free(), it is
almost certainly not an errorin lmm free().

10.3 Kernel Debugging Tools

There are a number of ways to go about finding bugs in kernel code. The most direct way for
this project is to use the Simics symbolic debugger. Information about how to use the Simics

29

debugger can be found in the documentation on the course website (410/simics/doc), and by
issuing thehelp command at the simics prompt.

Also available is theMAGIC BREAK macro defined in410kern/lib/inc/kerndebug.h.
Placing this macro in code will cause the simulation to stop temporarily so that the debugger
may be used.

The function calllprintf kern() may also be used to output debugging messages to the
simics console, and to the file kernel.log. The prototype forlprintf kern() can be found in
410kern/lib/inc/stdio.h.

10.4 User Task Debugging

Symbolic debugging user tasks can be useful in the course of finding bugs in kernel
code. TheMAGIC BREAK macro is also available to user threads by#includeing the
410user/inc/magic break.h header file.

The function calllprintf()may be used to output debugging messages from user programs.
Its prototype is in410user/lib/inc/stdio.h.

Symbolic debugging of user programs involves some set-up. Simics can keep track of
many different virtual memory spaces and symbol tables by associating the address of the page
directory with the file name of the program.

Simics must switch to the appropriate symbol table for the current address space as soon as a
new value is placed in%cr3. For this to work, you must do several things,in this order.

1. Before loading user programs, of course you should have paging enabled.

2. As a new program is loaded, register its symbol table with Simics with a call to
SIM register user proc(), defined in410kern/lib/inc/kerndebug.h.

3. Every time you switch user address spaces viaset cr3 debug(), the Simics magic-
break instruction will be used to tell the Simics debugger toswitch symbol tables. If
you believe you must change the value of%cr3 in assembly language, simply copy the
relevant instructions from theset cr3 debug() we provide. Alternatively, you may call
SIM switch() to change the debugger’s idea of which thread is running without changing
%cr3 (though most groups won’t feel a need to do this).

4. Finally, when a task exits, please make a call toSIM unregister user proc() defined in
kerndebug.h.

If you do not wish to enable debugging of user threads, simplydo not register threads with
Simics, and use the macroset cr3() instead ofset cr3 debug(). But we recommend that you
do enable user-space debugging, because it is easy and can significantly improve your debugging
experience.

30

10.5 Test Programs

You should expect to write some programs to test various features of your kernel. While many of
these may be one-time throw-away programs, you may find yourself writing a few more-involved
(and hence more useful) programs. You may share these with your friends. However, we would
appreciate it if you run test programs past the course staff before posting them more widely–
the best mechanism would be to place candidate programs in your mygroup/scratch directory
and send mail to the staff mailing list. You will probably wish to include your names, Andrew
usernames, and semester in the program output, especially if we end up incorporating your code
into future editions of the class.

11 Checkpoints

The kernel project is a large project spanning several weeks. Over the course of the project the
course staff would like to review the progress being made. For that reason, there are checkpoints
that will be strictly enforced. The checkpoints exist so that important feedback can be provided,
and so should be taken very seriously.

Don’t be complacent about missing “just one” checkpoint. Catching up ishard: if you’re
“merely” a week behind, that means you need to work twice as hard for an entire week in order
to catch up...

As each checkpoint arrives, we will create a corresponding directory for you to hand in
your code. We will generally not grade checkpoint code submissions, but they have proven
to be a valuable reference in past semesters. For CheckpointOne you will place your code
in p3ck1, etc.

11.1 Checkpoint One

For Checkpoint One, you should have a user task (with one thread) that can callgettid(). This
sounds simple, but it involves quite a bit of work which you will probably need to plan carefully.
Strive to document most of this codebeforeyou write it.

1. Draft fault handlers – you may end up re-writing these (optional challenge: can you
generatethese extremely repetitive assembly functions with C preprocessor macros?).

2. Draft system call handler for gettid()

3. Draft pcb/tcb structures – think about the task/thread split early, in terms of how thread
creation and exit will work.

4. Basic virtual memory system

• Dummy up a physical-frame allocator (allocate-only, no free)

• Spec and write page-directory/page-table manipulation routines

31

• Spec and write draft “address space manager” (probably centered around a “region
list” with a list of per-region-type “methods”).

5. Rough first-program loader

• Set up a task.

• Set up a thread.

• Initialize various memory regions.

• Decide on register values.

• Craft kernel stack contents.

• Set various control registers.

You may find that there are many ways forIRET to go awry. If so, it might be useful to see
how many of the possibilities can be eliminated if you temporary re-work your code so a
RET instruction would work instead. Otherwise, you might find useful strategy suggestions
in the “Debugging” lecture.

11.2 Checkpoint Two

For Checkpoint Two, it should be possible for two threads (probably belonging to two different
tasks, which may be hand-loaded) to context-switch back andforth, andeitherfork() orexec()
(your choice) should work.

Reaching Checkpoint Two will be much easier if your code for Checkpoint One was carefully
designed and modular.

11.3 Checkpoint Three

For Checkpoint Three, roughly the third week of the project,you should have approximately
half of the system calls and exception handlers done. Note that you should count by lines of
code rather than by number of entry points–some are easier than others. For example, the page
fault handler, which will require noticeable thought and implementation, is probably 50% of the
exception-handler implementation by itself.

11.4 Week Four

While we will probably not collect any further checkpoints,by the fourth week of the project you
shouldreally have at least started all of the system calls.

11.5 Week Five

You should aim to have all of your code written, by the end of this week. You will have plenty of
bugs and rewriting to keep you busy in the last week (really!). Remember to focus your effort on

32

getting the core system calls working solidly–you won’t pass the test suite if we can’t boot your
kernel, launch the shell, and have it run commands.

12 Strategy Suggestions

Before we begin, we’d like to recommend to you the sage words of 15-410 student Anand
Thakker.

Each time you sit down to write code, pause to remind yourselfthat you love yourself,
and that you can demonstrate this love by writing good code for yourself.

Here are further suggestions:

• You will probably end up throwing away and re-writing some non-trivial piece of code.
Try to leave time for that.

• As you progess through the project, you should acquire the ability to draw detailed pictures
of every part of the system. For example, if you come see the course staff about a problem,
we may well ask you to draw a picture of the thread stack at the point where the problem is
encountered. We may also ask you to draw pictures of a task’s page tables, virtual address
space, etc. In general, at several points in the project you will need to draw pictures to get
things right, so get in the habit of drawing pictures when you’re in trouble.

• Try to scheduleat leastthree chunks of time every week, eachat leasttwo hours long, to
meet with your partner. You will need to talk about each other’s code, update each other
on bug status, assign or re-assign responsibility for code blocks or particular bugs, etc.

• You should really be familiar with your partner’s code. You will need to answer exam
questions based on it.

• Since a code merge takes time at least proportional to the inter-merge time, you should
probably merge frequently. If you work independently for five weeks, it will probably take
you a week to merge your code, at which point you will have no time to debug it.

• Merging can be much easier if you use branches. For example, one partner can implement
fork() while the other implementsreadline(). Each can work on an independent
branch, committing every hour or so, rolling back if necessary, adding test code, etc. Once
thereadline() implementor is done, she can merge the most recent revision on her branch
against the trunk. Her partner can then merge from the trunk into his working area. This
will probably result in a non-functional kernel, but observe that the first partner’s branch,
the trunk, and his branch should all be ok and kernels can be checked out and built from
all of them. By the way, make sure you’re not asking your source-control system to store
every version of random or binary files such askernel.log, kernel, bootfd.img, and so
forth–that’s an easy way to run out of disk space.

• If you are paranoid, there is no reason why you shouldn’t occasionally snapshot your
repository to a safe location in case your source control system goes haywire on you.

33

13 Plan of Attack

A recommended plan of attack has been developed. While you may not choose to do everything
in this order, it will provide you with a reasonable way to getstarted.

If you find yourself embarking on a plan which isdramaticallydifferent from this one, or
a kernel architecture which is dramatically different fromwhat we’ve discussed in class, you
should probably consult a member of the course staff. It is quite possible that your approach
contains a known-to-be-fatal flaw.

1. Read this handout and gain an understanding of the assignment. First, understand the
hardware, and then the operations that need to be implemented. Spend time becoming
familiar with all of the ways the kernel could be invoked. What happens on a transition
from user mode to kernel mode? What happens on a transition from kernel mode to user
mode?

2. Review the kernel-specification document. Generate a list of the underlying modules each
system call and exception handler will rely on, and also a list of hazards or challenges for
each kernel entry point.

3. Write pseudocode for the system calls as well as the interrupt handlers, paging system, and
context switcher. Start by writing down how all of these pieces fit together. Next, increase
the level of detail and think about how the pieces break down into functions. Then, write
detailed pseudocode.

4. Based on the above step, rough out the Task Control Block and Thread Control Blocks.
What should go in each?

5. Write functions for the manipulation of virtual address spaces. Direct map the kernel’s
virtual memory space. Keep track of free physical frames. Figure out to allocate and
deallocate frames outside the kernel virtual space so they can be assigned to tasks (optional
challenge: can you do this in a way which doesn’t consume morekernel virtual space for
management overhead as the size of physical memory grows larger?).

6. Now that there is an initial page directory, it is possibleto enable paging. Do so, then write
the loader. Create a PCB for the idle task. Load and run the idle task.

7. Implement thegettid() system call. Once this is working, the system call interfaceis
functioning correctly. Congratulations! You have reachedcheckpoint one.

8. Write the timer interrupt handler. For now, simply verifythat the IDT entry is installed
correctly, and that the interrupt handler is running.

9. Write functions for scheduling and context switching. Load a second task. Have the timer
interrupt handler context switch between the first and second task.

10. Implementfork() or exec(). At this point you will have reached checkpoint two.

34

11. Implementexec() or fork(), whichever one you skipped before. You can test how they
work together by having the init task spawn a third user task.From this point forward
your old code to hand-load a task should be invoked only once or twice, to loadinit and
possiblyidle.

12. Implement thehalt() system call. Why not? It’s easy enough.

13. Take a few moments to get user-space symbolic debugging enabled–it’s better to do it now
than to decide in the last few days that you really need it (right away!) only to run into
some bug getting it to work.

14. Implement thenew pages() system call, and test it with the user-modemalloc().

15. Write a page fault handler that frames new pages on legal accesses to the automatic-stack
region, and prints debugging information on bad accesses (you are probably not ready to
kill threads at this point).

16. Integrate the keyboard interrupt handler and the console driver into the kernel. Install an
entry for the keyboard in the IDT.

17. Implement a rough version of thereadline() system call. If you haven’t confronted
thread sleep/wakeup yet, you may want to dodge the issue longenough to get the shell
running, but you can’t put it off forever. You may also wish toecho input characters in a
simplistic way.

18. Implement theprint(), set term color(), andset cursor pos() system calls.

19. Implementwait() andexit() (this is not easy!). Please take care thatexit() is not
grossly inefficient. At this point, the shell should run, andyou can argue that you have
written an operating system kernel. This is roughly checkpoint three.

20. Fill out the page fault handler. Threads should be killedon bad memory accesses.

21. Implement thesleep() system call. Recall that the round-robin scheduler should run
in constant time. It isbad if your scheduler typically requires run-time proportional to
the number ofnon-runnablethreads. Hmm... Also, while the kernel spec necessarily
authorizes some degree of sleep-time imprecision, that’s not the same as authorizing you
to ignore the tick count.

22. If you haven’t already, start running tests from the testsuite provided by the course
staff. From this point on, every time you complete a system call or feature you should
immediately try any tests which are thereby enabled. Remember, the “test after code
complete” approach is an excellent way to obtain all sorts ofthings you don’t want.

23. Implement theyield(), deschedule(), andmake runnable() system calls.

24. Implementthread fork(), and test it using your thread library.

35

25. Go back and fill in any missing system calls. Anywhere you relied on a dummy
implementation of some critical feature, replace the internals of the interface with
something better.

26. Now might not be a bad time to upgrade yourreadline() if your previous implementation
cut some corners. If you have extra design time, you might want to think about ways to
structure your keyboard interrupt handler and otherreadline() code to make it easy to
implementgetchar().

27. Write many test cases for each system call. Try to break the kernel, since we will and you
want to get there first... One thing which has proven productive for many students is varying
the frequency of timer-driven context switches. Be sure that you restore your kernel to a
reasonable switching interval (10–50 milliseconds) before you submit your project, though.

28. Make a cleanup pass through your code to remove spuriousMAGIC BREAK invocations, dead
code, and other untidy potential sources of grader anguish.

29. At this point yourREADME.dox should contain an accurate known-bug list.

30. You’re done! Celebrate!

36

	Introduction
	Overview
	Goals
	Technology Disclaimer
	Important Dates
	Groups
	Grading
	Interactions between Project 3 and Project 4
	Hand-in

	Hardware Primitives
	Privilege Levels
	Segmentation
	Special Registers
	The Segment Selector Registers
	The EFLAGS Register
	Control Registers
	The Kernel Stack Pointer
	C interface

	Paging
	The Layout of Physical Memory

	The Boot Process
	Device Drivers and Interrupt Handlers
	Interrupts, Faults, and Exceptions
	Hardware Interrupts
	Software Interrupts
	Faults and Exceptions
	Interrupt Handler Flavors
	Writing an Interrupt Handler
	Interrupts and Preemption

	Device Drivers
	Floating-Point Unit

	Context Switching and Scheduling
	Context Switching
	Scheduling
	Scheduling, Sleeping, and Synchronization
	Convolution

	System Calls
	The System Call Interface
	Validation
	Specific System Calls

	Building and Loading User Programs
	Building User Programs
	Loading User Programs

	The Programming Environment
	Kernel Programming
	A Simple C Library
	Processor Utility Functions
	Build Infrastructure

	User Programming
	Simulator versus Reality

	Hints on Implementing a Kernel
	Code Organization
	Encapsulation
	Synchronization
	Method tables
	Embedded Traversal Fields
	Avoiding the malloc()-blob Monster
	List Traversal Macros
	Accessing User Memory

	Task/Thread Initialization
	Thread Exit
	Kernel Initialization
	Memory Management Operations

	Debugging
	Requests for Help
	Debugging Strategy
	Kernel Debugging Tools
	User Task Debugging
	Test Programs

	Checkpoints
	Checkpoint One
	Checkpoint Two
	Checkpoint Three
	Week Four
	Week Five

	Strategy Suggestions
	Plan of Attack

