Project 3: Writing a Kernel From Scratch
15-410 Operating Systems
October 7, 2006

Contents
1 Introduction 4
1.1 OVeIVIEW o e e e 4
1.2 Goals e 4
1.3 Technology Disclaimer. 4
1.4 ImportantDates 5
1.5 Groups o 5
1.6 Grading. 5
1.7 Interactions between Project 3and Project4. 6
1.8 Hand-in. 7
2 Hardware Primitives 7
2.1 PrivilegelLevels. 7
2.2 Segmentation. e 7
2.3 Special Registers 8
2.3.1 The Segment Selector Registers 8
2.3.2 TheEFLAGSRegister 8
2.3.3 ControlRegisters 8
2.3.4 TheKernel Stack Pointer. 9
235 Cinterface. e 9
24 Paging.o e 9
2.5 The Layoutof PhysicalMemory 11
3 The Boot Process 11
4 Device Drivers and Interrupt Handlers 12
4.1 Interrupts, Faults,and Exceptions 12
4.1.1 HardwarelInterrupts. 12
4.1.2 SoftwarelInterrupts 12
41.3 Faultsand Exceptions 12
4.1.4 InterruptHandlerFlavors. L 13
415 Writingan InterruptHandler 0oL 13
4.1.6 Interruptsand Preemption. 13
4.2 DeviceDrivers e 14

4.2.1 Floating-PointUnit 14

Context Switching and Scheduling 15
5.1 ContextSwitching 15
5.2 Scheduling 16
5.3 Scheduling, Sleeping, and Synchronization. 16
5.4 Convolution. 17
System Calls 17
6.1 The System CallInterface., 17
6.2 Validation. e 17
6.3 SpecificSystemCalls. 18
Building and Loading User Programs 18
7.1 BuildingUserPrograms. e 18
7.2 LoadingUserPrograms. 19
The Programming Environment 19
8.1 Kernel Programming. 19
8.1.1 ASimpleClLibrary 19
8.1.2 Processor Utility Functions. 21
8.1.3 BuildInfrastructure 22
8.2 UserProgramming. e 22
8.3 SimulatorversusReality. 22
Hints on Implementing a Kernel 23
9.1 CodeOrganization. e 23
9.1.1 Encapsulation. 23
9.1.2 Synchronization. 24
9.1.3 Methodtables. 24
9.1.4 Embedded TraversalFields 25
9.1.5 Avoiding the malloc()-blobMonster. 26
9.1.6 ListTraversalMacros. 26
9.1.7 AccessingUserMemory 26
9.2 Task/Thread Initialization 26
9.3 Thread EXit. e 27
9.4 Kernellnitialization. 27
9.5 Memory ManagementOperations. 28

10 Debugging
10.1 RequestsforHelp
10.2 Debugging Strategy
10.3 Kernel Debugging Tools.
10.4 UserTaskDebugging.
10.5 TestPrograms o e e

11 Checkpoints
11.1 CheckpointOne
11.2 Checkpoint TWo
11.3 CheckpointThree
11.4 Week Four e
115 Week Five. o e

12 Strategy Suggestions

13 Plan of Attack

28
28
29
29
30
31

31
31
32
32
32
32

33

34

1 Introduction

This document will serve as a guide in completing the 15-4dd&l project. The goal of this
document is to supply enough information to complete thgeptavithout getting bogged down
in implementation details. Information contained in lgetnotes, or in the Intel documentation
will be repeated here only sparingly, and these sourcesoftéh be referenced, so keep them
handy. Good luck!

1.1 Overview

This project will require the design and implementation djrmix-like kernel. The 410 kernel
will support multiple virtual memory address spaces viaipggpreemptive multitasking, and a
small set of important system calls. Also, the kernel wilbgly device drivers for the keyboard,
the console, and the timer.

1.2 Goals

Acquiring a deep understanding of the operation of a Urkg-kernel through the design
and implementation of one.

Gaining experience reading technical specifications sa¢halntel documentation.

Debugging kernel code. Virtual memory, interrupts, andctwrency concerns add
complexity to the debugging process.

Working with a partner. Learning how to program as a teamr (Paigramming, division
of labor, etc.). Using source control.

1.3 Technology Disclaimer

Because of the availability, low cost, and widespread ugb@&86 architecture, it was chosen
as the platform for this sequence of projects. As its creattel Corporation has provided much
of the documentation used in the development of these fsojéa its literature Intel uses and
defines terms like interrupt, fault, etc.. Ontop of this tBé& architecture will be the only platform
used in these projects.

The goal of this project set is certainly not to teach thesgiwrasies of the x86 architecture
(or Intel's documentation). That said, it will be necessarppecome accustomed to the x86 way
of doing things, and the Intel nomenclature, for the purpadeompleting this project set. Just
keep in mind that the x86 way of doing things is not the only wagloing things. It is the price
to be paid for learning the principles of operating systemsageal world system instead of a
simulated architecture.

1.4 Important Dates
e Friday, October 6th: Project 3 begins.
e Monday, October 16th: Checkpoint 1 due (in-cluster demo).
e Monday, October 23rd: Checkpoint 2 due (in-cluster demo).

e Friday, November 17th: Project 3 due.

1.5 Groups

The kernel project is a group assignment. You should alrdedin a group of two from the
previous project. If you are not in a group, or you are havitigepgroup difficulties, send email
to staff-410@cs.cmu.edu. If you experienced partner diffies during the previous project, it
will be very important taesolvethem in the first week of the kernel project. In order to do well
on this project, you will need to wonkoreclosely and productively with your partner than was
true for the thread library project. If things are on a dowrhvi@end, that’s unlikely to happen.
One particular thing to be wary of: if you feel that you wrdte tvast majority (say, 85%) of your
group’s Project 2, giveeriousconsideration to seeking help from the course instructérggou
involve usearlyin Project 3 we may be able to suggest ways to increase thaieéfeess of your
collaboration. It's ok if it took a while for your Project 2 taboration to get off to a good start,
but the happiness curve should be increasing toward the feRtbfct 2—you’ll probably need
further improvement for Project 3 to go well. If instead il f@pidly near the end, you should
probably contact us.

In order for you to do well in this class, it will be important f or you to read and
understand your partner’'s code. We strongly suggest that yo schedule time for reading
and discussing each other’s code at least twice weekly.

1.6 Grading

The primary criteria for grading are correctness, perfarceadesign, and style.

A correct kernel implements the provided specification.r€cness also includes robustness.
A robust kernel does not crash (no matter what instructioe®gecuted by user code), handles
interesting corner cases correctly, and recovers grdgdfam errors.

For the purposes of this class, performance refers mairyptopreemptible your kernel is
(see Sectiod.1.6. Also, you should avoid standard pitfalls related to pugtihreads to sleep (see
Section5.3). Preemptibility and sleep/wakeup will represent appraately 10% of the project
grade.

We may fuss about code which takesichlonger than it needs to. For example, if easy
O(1) algorithm exists, don’t use an O(n) algorithm whichuiegs the same amount of code—this
will typically indicate carelessness. On the other handavemotrequiring you to use splay trees
or even hash tables where a linked list is appropriate oraat ldefensible. See Sectiérl.1

A well designed kernel is organized in an intuitive and gfinéflorward way. Functionality is
separated between different source files. Global variadnkesised when appropriate (they are
more appropriate in OS kernels than in most programs), kitbrexcess (basically, consider the
correct scope). Appropriate data structures are used wéessted. When practical, data structure
implementations are hidden behind an appropriate interfsee Sectiof.1.1below).

A kernel with good style is readable. Some noted deviatioos fwhat may be generally
considered to be good style will be penalized. Also, poooipnmented, hard-to-read code will be
penalized, as will a project that does not follow the prdsamtibuild process. Overall, readability,
structure, and maintainability issues will form approxteig 10% of the project grade.

Please note that it is the considered opinion of the couesdé tsiat inline assembly code
(asm()), even more than preprocessor macros, has enough defatitsthse must always be
supported by a conscious argument. For example, once yoe &dU you will probably write
code which must run on multiple hardware platforms. Thisunegnent plus inline assembly
language immediately results in #nf def explosion. Also, unless you use the “long form”
of asm(), which correctly declares to the compiler the C-languadects of your assembly
code, you leave yourself open to the substantial risk thatfereint compiler version, different
compilation flags, or even minor changes to your C code mag tisastrous interference effects.
It is almost always better to make a procedure call to asseatlle in a Sfile.

Your score will be based on a mixture of test suite results@uk comments made by a
member of the course staff. In addition, we intend to scheedB80-minute interview/de-briefing
session with each group. In order to avoid disappointinglgsurprises on the kernel project,
you may wish to consult the “Grades” section of the syllabihile the exact grading criteria
and cut-offs differ by semester, turning in a kernel whiclsges all tests we provide doest
imply an “A.”

While we do not require you to implement copy-on-write orazéh-on-demand, many
students choose to implement one or the other because isseene professional. While we
concur with the sentiment, please don't let a slick COW impatation (or another exotic
option such as a splay-tree scheduler) stop you from getbingext switch to be clean and pure
and being able to cleanly put threads to sleep and re-awdien.t Implementing ZFOD is
dramatically simpler than implementing COW and can stilgbée satisfying.

In order for us to run the test suite your kernel musttdrop into the debugger as it is booting,
or any other time in the course of a test, as that will resutétest failing. In addition, the shell
must work and you must properly implement tte t () system call for the tests to run properly.

1.7 Interactions between Project 3 and Project 4

It is likely that groups will not be permitted to do Project Aless they complete Project 3
satisfactorily. Detailed go/no-go criteria will be madexgable to you near the end of Project 3,
but your mental model should be that you will need to pass 80%test suite which we will
provide you with.

Also, Project 4 will probably center on enhancing your Peofekernel. This means you will
probably need to revise or re-architect some part of yowtswl to Project 3. It is probably wise

to plan ahead for this by writing clean, modular code which wall be able to understand after
you turn itin.

1.8 Hand-in

The hand-in directories will be created as the due date n&éwsge specific instructions will be
provided at that time. Subject to later instructions, plamand in all source files, header files,
and Makefiles that you write. Plan to keep to yourself diskgméles, editor-generated backup
files, log files, etc.

When handed in, your kernel must be runnable! This means that inust upon being built
and booted, start runningll e, i ni t, andshel | without user intervention. In particular, it must
not drop into the simics debugger. When we run the test suiteg thél not be a human present
to continue execution. Thus, the test harness will declarte kernel to have failed the entire
suite.

Also, your kernel should not generate reamsl pfintf() debugging messages while
running. Ideally you should adjust the setting of your tréaelity (see Sectior9.1) so that
it generatesio messages, but in any case the normal loading, executiomativth of a program
should not generate more than 20 line&efnel . | og output.

2 Hardware Primitives

2.1 Privilege Levels

The x86 architecture supports four privilege levels, PL@tigh PL3. Lower privilege numbers
indicate greater privilege. The kernel will run at PLO. Usede will run at PL3.

2.2 Segmentation

A segment is simply a region of the address space. Two nopabfeerties can be associated with
a segment: the privilege level, and whether the segmenatmntode, stack, or data. Segments
can be defined to span the entire address space.

The 410 kernel will use segmentation as little as possiblee ¥86 architecture requires
some use of segmentation, however. Installing interruptifeas, and managing context switch
requires some understanding of segmentation.

In the 410 kernel, there will be four segments. These foumsggs will each span the entire
address space. Two of them will require that the privilegellbe set to PLO to be accessed, and
two will require that the privilege level be set to PL3 or lawte be accessed. For each pair of
segments, one will be code and one will be data.

2.3 Special Registers

This project requires an understanding of some of the x86gssor data structures. This section
will cover some important structures that the kernel mustipaate in order to function properly.

2.3.1 The Segment Selector Registers

There are six segment selector registéss., 9ss, %ls, %es, % s, and%gs. A segment selector is
really an index into one of two processor data structurdea#he Global Descriptor Table (GDT)
and Local Descriptor Table (LDT). These tables are wherségenents are actually defined. The
provided startup code sets up segment descriptors in the @RTt is the responsibility of the
kernel to have the correct values in the segment select@steeg) on entering and leaving the
kernel. The code segment selector for the currently runttingad is stored if€s. The stack
segment selector for the currently running thread is staréés. It is possible to specify up
to four data segment selectors. They #@is through%gs. The code segment selector is used
to access instructions. The stack segment selector is nstddk related operations (i.€LJSH,
POP, etc.). The data segment selectors are used in all otheatopes that access memory.

On entering theker nel _mai n() function, the kernel and user segments have already been
installed into the GDT. When a user thread is started, uset tode, stack, and data segment
selectors need to be specified and loaded into the segment@ealegisters. When a user thread
takes an interrupt, the code and stack segment selectstaegwill be saved automatically. The
data segment selector registers and the general purpasteregvill not be saved automatically,
however.

For more information on the GDT and segmentation pleasewethe relevant lecture notes
and consult your textbook, sections 2.1, 2.4, and 3.2nbEl - sys. pdf , and the segmentation
handout on the course web site.

2.3.2 The EFLAGS Register

The EFLAGS register controls some important processor state. It wal ecessary to
provide the correct value for thEFLAGS register when starting the first user thread, so it
is important to understand its format. THEELAGS register is discussed in section 2.3 of
i ntel-sys. pdf. 410kern/1ib/inc/x86/eflags.h contains useful definitions. The bootstrap
process set&FLAGS to an appropriate value, available to you via ¢fe¢ ef | ags() macro from
410kern/ | i b/inc/x86/ proc.reg.h, for your kernel execution. Before entering user mode you
will need to arrange for bit 1 (“reserved”) to be 1 and aligminehecking to be off. Also, after
studying what they do, arrange for the andl OPL_KERNEL bits to be set appropriately. The first
method you think of for doing this may not be the right method.

2.3.3 Control Registers

e Control Register Zero%r 0): This control register contains the most powerful system
flags. The 410 kernel will only be concerned with bit 31, whaaiivates paging when set,

and deactivates it when unset. Paging is discussed belowmobDmodify the state of any
of the other bits.

e Control Register On€r 1): This control register is reserved and should not be todiche

e Control Register Two%er 2): When there is a page faubgr 2 will contain the address
that caused the fault. This value will be needed by the pageHandler.

e Control Register Three%r 3): This control register is sometimes known as the Page
Directory Base Register (PDBR). It holds the physical agsid the current page directory
in its top 20 bits. Bits 3 and 4 control some aspects of cachimyshould both be unset.
The%r 3 register will need to be updated when switching addressespad/riting to the
%r 3 register invalidates entries for all pages in the TLB notkedrglobal.

e Control Register Fourdgr 4): This control register contains a number of extension flags
that can be safely ignored by the 410 kernel. Bit 7 is the PdgbabEnable (PGE) flag.
This flag should be set for reasons discussed below.

2.3.4 The Kernel Stack Pointer

In the x86 architecture, the stacks for user level code anuekéevel code are separate. When
an interrupt occurs that transitions the current privillyel of the processor to kernel mode, the
stack pointer is set to the top of the kernel stack. A small@mof context information is then
pushed onto the stack to allow the previously running thteadsume once the interrupt handler
has finished.

The value of the stack pointer when we enter kernel mode iset®fy the currently running
task. Tasks are a hardware “process” mechanism provideteby86 architecture. Your 410
kernel will not use tasks. It is faster to manipulate the psscabstraction in software. It is
necessary, however, to define at least one task. This takes ipl the bootstrapping code, before
execution of théer nel _mai n() function begins. The provided functicet _esp0(), defined in
410kern/1i b/ x86/ seg. ¢, will specify the beginning value for the kernel stack peirihe next
time a user-to-kernel transition occurSince when you call it you are in kernel mode, “nothing
happens” (until much later).

2.3.5 Cinterface

There are inline assembly macros definedifkern/1i b/inc/ x86/ proc_reg. h, that can be
used to read and write many of the processor’s registers.

2.4 Paging

The x86 architecture uses a two-level paging scheme withKibobyte pages. Itis also possible
to use larger page sizes, though this is outside the scopesgfrbject. The top level of the paging
structure is called the page directory, while the seconel lsansists of objects called page tables.

The formats of page directory entries and page table erareegery similar. However, their fields
have slightly different meanings. Here is the format of batpage directory entry and a page
table entry.

Entries in both tables use the top twenty bits to specify airegs. A page directory entry
specifies the physical memory address of a page table in phigventy bits. A page table entry
specifies the number of a physical frame in the top twenty Bisth page tables and physical
frames must be page aligned. An object is page aligned if tieotm twelve bits of the lowest
address of the object are zero.

The bottom twelve bits in a page directory or page table earyflags.

e Bit O: This is the present flag. It has the same meaning in batje glirectories and page
tables. If the flag is unset, then an attempt to read, writeexecute data stored at an
address within that page (or a page that would be referencdtelnot present page table)
will cause a page fault to be generated. On installing a ng& eble into a page directory,
or framing a virtual page, the present bit should be set.

e Bit 1: This is the read/write flag. If the flag is set, then thge& writable. If the flag is
unset then the page is read-only, and attempts to write aulse a page fault. This flag has
different meanings in page table and page directory entBeg the table on page 136 of
i ntel -sys. pdf for details.

e Bit 2: This is the user/supervisor flag. If the flag is set, thie® page is user accessible.
This flag has different meanings in page table and page diseentries. See the table on
page 136 of nt el - sys. pdf for details.

e Bit 3: This is the page-level write through flag. If it is setjt®-through caching is enabled
for that page or page table, otherwise write-back cachingésl. This flag should be left
unset.

e Bit 4: This is the page-level disable caching flag. If the flaget, then caching of the
associated page or page table is disabled. This flag shougdthmset.

e Bit 5: This is the accessed flag. It is set by the hardware wherpage pointed to by a
page table entry is accessed. The accessed bit is set in aipagtery entry when any of
the pages in the page table it references are accessed.athisdly be ignored by the 410
kernel.

e Bit 6: This is the dirty flag. It is valid only in page table eies. This flag is set by the
hardware when the page referenced by the page table entrjtisnito. This flag can be
used to implement demand paging. However, this flag may e égihby the 410 kernel.

e Bit 7: This is the page size flag in a page directory entry, &edpiage attribute index flag
in a page table entry. Because the 410 kernel uses four kdgiages all of the same type,
both of these flags should be unset.

10

e Bit 8: This is the global flag in a page table entry. This flag hasmeaning in a page
directory entry. If the global flag is set in a page table erttrgn the virtual-to-physical
mapping will not be flushed from the TLB automatically whentimg %r 3. This flag
should be used to prevent the kernel mappings from beingdtush context switches. To
use this bit, the page global enable flagam 4 must be set.

e Bits 9, 10, 11: These bits are left available for use by saféwaTlhey can be used to
implement demand paging. The 410 kernel may ignore these bit

2.5 The Layout of Physical Memory

Although there are many ways to partition physical memdwy 410 kernel will use the following
model. The bottom 16MB of physical memory (from address @J@MOO0 to address 0x0Offffff,
i.e., just undetJSER_.VEM.START as defined by 10kern/ i b/inc/ x86/ seg. h), is reserved for
the kernel. This kernel memory should appear as the bottowiB16f each task’s virtual
address space (that is, the virtual-to-physical mappitigp&ithe identity function for the first 16
megabytes; this is known as “direct mapping”, or “V=R” in B\ mainframe world).

Note that user code should not be able to read from or writetoed memory, even though it
is resident at the bottom of each user task’s address spacthdr words, from the point of view
of user code, memory between 0x00000000 and OxO0Offffff khba just as invalid as any other
memory not part of the text, data, bss, automatic stackewrpages() -allocated regions.

The remainder of physical memory, i.e., from 0x01000000 wghould be used
for frames. In 410kern/lib/inc/x86/seg.h is a prototype for a functioni nt
machi ne_phys_franes(voi d), provided by410kernel /|ib/x86/seg. c, which will return
to you the number ofPAGE_SI ZE-sized frames supported by the simics virtual machine
you will be running on RACE.SIZE and the appropriatePAGE_SH FT are located in
410kern/ | i b/inc/ page. h). This frame count will include both kernel frames and usenrmry
frames.

Please note that the memory-allocation functions disclbstow (e.g.jmal | oc()) manage
only kernel virtual pages. You are responsible for defining anglémenting an allocator
appropriate for the task of managing free physical frames.

3 The Boot Process

The boot process is somewhat complicated, and it is not sagego fully understand
it in order to complete this project. To learn more about tlwetbprocess, please read
about the GRUB boot loadeht(t p: / / ww. gnu. or g/ sof t ware/ grub/). This is the boot
loader that will be used to load the 410 kernel. The 410 kewwhplies with the
Multiboot specification as defined attp://ww. ntc. ac. uk/ grub/ nul tiboot toc. htn .
After the boot loader finishes loading the kernel into mematyinvokes the function
mul ti boot _mai n() in 410kern/ i b/ mul tiboot/base_nul ti boot _mai n. c. The support code
in 410kern/lib/nmul tiboot ensures that the 410 kernel follows the Multiboot specifcgt

11

initializes processor data structures with default valusmsd calls the 41er nel _nain()
function.

4 Device Drivers and Interrupt Handlers

Your work on Project 1 provided you with most of the interrinaindling knowledge necessary
for the kernel project. In this section we will briefly coveays in which Project 3 demands more
or different treatment.

4.1 Interrupts, Faults, and Exceptions

The Interrupt Descriptor Table (IDT) contains entries fardware device interrupts (covered
in Project 1), software interrupts (which you invoked in jeod 2), and exception handlers.
Exceptions are conditions in the processor which are ysualhtended and must be addressed.
Page faults, divide-by-zero, and segmentation faults latgpes of exceptions.

4.1.1 Hardware Interrupts

You will support the same hardware devices you did in Prdjetttough your device drivers will
be somewhat more complicated.

4.1.2 Software Interrupts

Hardware interrupts are not the only type of interrupt. Paags can issue software interrupts as
well. These interrupts are often used as a way to transfeuéra to the kernel in a controlled
manner, for example during a system call. To perform a seéwsderrupt a user application will
execute a special instruction\T n, which will cause the processor to execute ittta handler

in the IDT.

In this project, software interrupts will always cause «itege level change, and you will
need to understand what the CPU hardware places on the sidok @ privilege level change
(see page 152-153 oft el - sys. pdf).

4.1.3 Faults and Exceptions

Please read section 5.3iaft el - sys. pdf on Exception Classifications. Note that entries exist
in the IDT for faults and exceptions. The 410 kernel shoulddia the following exceptions:
Division Error, Device Not Present, Invalid Opcode, Aligamt Check, General Protection Fault,
and Page Fault. On each of these exceptions, the kerneldstepdrt the virtual address of the
instruction that caused the exception, along with any otbvant information (i.e., for page
faults which will kill a thread, the program counter, addr@ghich generated the fault and the
reason the memory access was invalid).

12

If the kernel decides to kill a thread due to an exceptiors thust be done cleanly. In
particular, any kernel resources related to the thread beis¢claimed. In general, your kernel
should treat the exception as if the thread had invaked (- 2), including, if necessary, the
standard mechanisms related to task exit.

4.1.4 Interrupt Handler Flavors

As mentioned previously, an x86 processor uses the IDT tdli@dddress of the proper interrupt
handler when an interrupt is issued. To install interrugtiltf and exception handlers, entries
must be installed in the IDT.

An IDT entry can be one of three different types: a task gateingerrupt gate, or a trap
gate. Task gates make use of the processor’s hardware téskisg functionality, and so are
inappropriate for the 410 kernel. Interrupt gates and traegdiffer in that an interrupt gate
causes interrupts to be disabled before the handler begewuon. You should think about
which kind of gate is appropriate for system calls, and alboclvkind is appropriate for your
hardware device drivers. Some reasonable designs requimgtare of interrupt gates and trap
gates. One question which might guide your thinking is, “Whappens if a timer interrupt
interrupts my keyboard interrupt handler?” It is probablycd idea for your documentation to
explain which gate flavors you used for what, and why.

The format of the trap gate is on page 151 of el - sys. pdf . Note that regardless of the
type of the gate, the descriptor is 64 bits long. To find outlihee address of the IDT, the
instruction SIDT can be used. A C wrapper around this inswags defined in the support code
in 410kern/ i b/ x86/ seg. c. The prototype can be found
kern/|i b/ i nc/ x86/ seg. h.

The purpose of some of the fields of a trap gate are not obvidhe.DPL is the privilege
level required to execute the handler. The offset is theuairaddress of the handler. The
Segment Selector should be set to the segment selectorddarijet code segment. This is
KERNEL _CS_SEGSEL defined ind10ker n/ 1'i b/ i nc/ x86/ seg. h.

4.1.5 Writing an Interrupt Handler

As mentioned above, when the processor receives an interiuges the IDT to start executing
the interrupt handler. Before the interrupt handler exesuhowever, the processor pushes
some information onto the stack so that it can resume itsiguevtask when the handler has
completed. The exact contents and order of this informasgresented on pages 152-153 of
intel-sys. pdf.

You will probably wish to save (& later restore) additionafarmation on the stack, such
as general-purpose registe®$HA and POPA may be useful; see pages 624 and 576 of
intel-isr.pdf))and segment registers.

4.1.6 Interrupts and Preemption

The 410 kernel has a number of critical sections. It may bessary to disable interrupts to
protect these critical sections. Interrupts can be disibjethe macrali sabl e_i nt errupt s()

13

defined in410kern/lib/inc/x86/procreg.h, or by theCLI instruction. Interrupts can be
enabled by the macrmnabl e_i nt errupt s() defined in the same file, or by tI&&1 instruction.

Our infrastructure for measuring your kernel’s preemjitipduring grading requires that the
hal t () system call to be implemented (in termsSbM.hal t ()). Please don’t overlook this!

Your 410 kernel should be as preemptible as possible. Them#hat, ideally, no matter
what code sequence is running, whether in kernel mode omagde, when an interrupt arrives
it can be handled and can cause an immediate context swapipibpriate. In other words, if an
interrupt signals the completion of an event that some thigavaiting for, it should be possible
for your kernel to suspend the interrupted thread and resheneaiting thread so that returning
from the interrupt activates the waiting thread rather tteninterrupted thread.

We will probably assign you a higher grade on Project 3 if ykemelalwaysswitches to the
waiting thread instead of resuming the interrupted thréad {s not necessarily the right thing to
do for performance reasons, but it will help you design fegonptibility and debug your context
switching).

To do this, you will need to strive to arrange that as much waskpossible is performed
within the context of a single thread’s kernel executioniemment without dependencies on
other threads. When race conditions with other processesravoidable, try to structure your
code so that task/thread switching is disabled for multgblert periods of time rather than for
one long period of time.

Please avoid any temptation to “fix” preemptibility issugs delegating work to special
“kernel tasks,” especially if they would result in serialiion of important system calls. As a
heuristic, you should make sure that multiple invocatioh§ar k() andnew_pages() can be
running (and making progress) “simultaneously” (intevkxhby clock interrupts).

A portion of your grade will depend on how preemptible yourmied is.

4.2 Device Drivers

Through the system call interface you will expose the fuordlity provided by a timer driver, a
keyboard driver, and a console driver oddly similar to thyse created for Project 1. Since you
and your partner both implemented these drivers, this geswou with an excellent opportunity
to read, review, and discuss each other’s code before hagitmwrite new code together. Please
take advantage of this opportunity!

4.2.1 Floating-Point Unit

Your processor comes equipped with a floating-point cogseor capable of amazing feats of
approximation at high speed. However, for historical reasthe x86 floating-point hardware is
baroque. We will not require you to manage the user-visitatef the floating-point unit.

The bootstrapping code we provide will initialize the flo@fipoint system so that any attempt
to execute floating-point instructions will result in a “de® not present” exception (see the Intel
documentation for the exception number). You should do $limg reasonable if this occurs,
i.e., kill the offending user thread (optional challengepgort floating-point).

14

Please note that since the floating-point hardware is nogh®anaged correctlyou should
not use floating-point variables or code in your kernel codaser-space test programs

5 Context Switching and Scheduling

5.1 Context Switching

Context switching is historically a conceptually difficplrt of this project. In addition, you will
need to considecarefully how to mix C and assembly language—there are many ways tqQ do it
and they vary in quality by at least a factor of two.

The first thing to understand is thatode switchand context switchare totally different.
Modeswitching is a transition from user mode to kernel mode ordverse; ingredients include
I NT, | RET, andesF0. Contextswitching is a transition from one thread to another, pdgsib
in a different task; it doesot involve | NT or | RET— unless you're doing it wrong! Mode
switching can happen without context switching (eggtti d()), and context switching can
happen with essentially no relationship to mode switchinga(kernel with more 1/O facilities,
two threads callingwite() could stay in kernel mode for quite some time including nplsi
context switches back and forth).

In a context switch, the general purpose registers and sggakector registers of one thread
are saved, suspending its execution, and the general muregssters and segment selector
registers of another thread are loaded, resuming its execufilso, the address of the page
directory for the thread being switched to is loaded Fito3.

Note that context switch should reactivate a thredukre it previously was suspendéa
other words, when a thread is suspended in kernel mode, bhaf joontext switch is1otto “get
the thread back to user space.” To see this, consider whaldshappen ifval | oc() invokes the
new_pages() system call, which tries to lock the kernel’s internal meynaltocator, but cannot
immediately do so. The earlier you think about what shouloplea in this situation, the better
your final context switch code will be.

We suggest you structure your kernel so that there is onlyp@mue of code which implements
context switching. Our suggestion is based on reading stl@enels and observing that multiple
context-switch code paths typically indicate multiple flieting partial understandings of context
switch. This often means that each one contains a bug. Asstied in the “Yield” lecture, if a
single function performs a context switch, then the poinexécution for every non-runnable
thread is inside that function and the instruction pointeed not be explicitly saved. We
also suggest that you set things up so there is only “one wek tmauser space” (rather than
having the scheduler or context switcher invoke distinctecpaths to “clean up” aftdror k() ,
thread_fork(), orexec()). If you can’'t manage one path, try to keep the count down tm tw

It is very unwise to attempt to solve a scheduling or congsxitching problem by having
kernel code invoke theNT instruction to get from one place to another. This approackery
expensive and structurally counterproductive.

When you are designing your context switch infrastructitrevill probably be helpful to
enumerate the situations in which it might be invoked (hinat just by the timer interrupt

15

handler).

Before a thread runs for the first time, meaningful contetiaed to be placed on its kernel
stack. A useful tool to set a thread running for the first tisithel RET instruction. It is capable
of changing the code and stack segments, stack pointenétisih pointer, an@&FLAGS register
all in one step. Please see page 153wkl - sys. pdf for a diagram of what theRET instruction
expects on the stack.

5.2 Scheduling

A simple round robin-scheduler is sufficient for the 410 letriThe running time of the scheduler
should not depend on the number of threads currently in thewsqueues in the kernel. In
particular, there are system calls that alter the order ikchvtinreads run. These calls should not
cause the scheduler to run in anything other than constaetcéed time (but see Secti@nl.1
on “Encapsulation” below).

You should avoid a fixed limit on the number of tasks or threddsparticular, if we were
to run your kernel on a machine with more memory (and/or aeldd§ER_VEM.START value), it
should be able to support more tasks and threads. Also, yauaekshould respond gracefully
to running out of memory. System calls which would requirer@enmemory to execute should
receive error return codes. In the other direction, it isstdered legitimate for a Unix kernel to
kill a process any time it is unable to grow its stack (optiatellenge: can you do better than
that?).

5.3 Scheduling, Sleeping, and Synchronization

While designing your kernel, you may find yourself temptedetoploy various “tricky”
techniques to avoid actually putting a thread to sleep. Aaghes to avoid:

Saved by the bellInstead of actually putting a thread to sleep, busy-wait tiré clock interrupt
arrives and invokes your context-switch code for you.

To run or not to run? Construct a deceptive “scheduling queue” containing ndt cimnable
threads but also threads asleep for fixed time periods aeddiiblocked indefinitely, thus
requiring the thread scheduler to hunt among decoys fordbasional genuinely runnable
thread.

Yield loop Instead of arranging to be awakened when the world is readydo, repeatedly
“sleep for a while” by putting yourself at the end of the rurege. Please note that, as we
discussed in class, this approaclgisranteedo never sleep the right amount of time (too
short for N-1 iterations and then too long the last time).

Not now, maybe later? Allow kernel code to be interrupted by devices, but forbitlatcontext
switching in kernel mode.

16

Of course, you matemporarilyemploy “quick hacks” during the course of development, but
please be aware that each “trick” on the list above mapsttjirechaving avoided understanding
an important conceptual issue, and this will influence yaadg accordingly.

In general, adhere to these principles:

e A thread should not run in kernel mode when it is hopelesshutd stop running when
it’s time to stop running),

e A sleeping thread should not run before it can (probably) mapctive work, and

e A sleeping thread should begin running, or at least be mankedable as soon ast can
once again do productive work.

5.4 Convolution

It is certainly possible to write your context switcher irchua way that it contains half of your
scheduler, or your scheduler in such a way that it contailfsohgour context switcher. Please
avoid these and similar architectures.

6 System Calls

6.1 The System Call Interface

The system call interface is the part of the kernel most exgp¢s user code. User code will make
requests of the kernel by issuing a software interrupt usied NT instruction. Therefore, you
will need to install one or more IDT entries to handle systetsc

The system call boundary protocol (calling convention) W& the same for Project 3 as it
was for Project 2. Interrupt numbers are definedlfiuser/1ib/inc/syscall int.h. Please
make sure your user-space stub library is organized inwditeording to the guidelines specified
in the “Pebbles Kernel Specification” document. Howevesida the kernel, there is no need for
each system call to contribute its own C source file and magchéader file. Please lay out your
system calls according to some sensible standard (sorgdibiween “two files per system call”
and “one monster syscall.c”).

6.2 Validation

Your kernel must verify all arguments passed to system,catid should return an integer error
code less than zero if any arguments are invalid. The kenaglnotkill a user thread that passes
bad (or inconvenient) arguments to a system call, antdsblutely may natrash.

The kernel must verify, using its virtual memory housekagpnformation, that every pointer
is valid before it is used. For example, argumentsxtiec() are passed as a null terminated array
of C-style null terminated strings. Each byte of each strimgst be checked to make sure that

17

it lies in a valid region of memory. The kernel should alsowrasthat it isn’t “tricked” into
performing illegal memory operations for the user as a tefllad system call arguments.

6.3 Specific System Calls

You will implement the system calls described in thebbles Kernel Specificatiaocument,
which has been updated as a result of comments receivecdydRiiject 2.

Though this should go without saying, kernels missing systalls are unlikely to meet
with strong approval from the course staff. However, as paudur tireless quest to calibrate
the difficulty of the projects, this semester you am required to implementget char () and
task_exit () for Project 3. You will want to think carefully about the i®siassociated with
these system calls, however, as there is some chance yohendlsked to implement them in
Project 4.

While implementing eadl i ne(), please try to ensure that you dot context switch to the
invoking thread every time a keyboard interrupt makes a nlearacter available (unless that
character would cause thieadl i ne() operation to complete and un-block the thread). We
realize that this is the opposite of what we asked you to d&foject 1. To see why this makes
sense, observe that if your kernel paged out to disk theneadfs user-space memory buffer
could be paged out. Paging it in as each character in a lorgyjped by a slow person arrived
would be wasted effort. Of course, since the shell dependg @rwill be more important for
you to have avorkingr eadl i ne() than anideal one.

If you find yourself wanting to implement extra “helpful” samtics inreadline(), it
might make sense to walk through some code which usesl i ne() to see if your proposed
extensions make sense. If you are thinking of “helpfully’xiffig up” the operation of
readl i ne(), ask yourself what would happen during thextinvocation...

Please don't build a “terminal irony” into yowxi t () system call: it isnot acceptabldor
exit () to “fail” because your kernel is out of memory...

7 Building and Loading User Programs

7.1 Building User Programs

User programs to be run on the 410 kernel should conform téotleving requirements. They
should be ELF formatted binaries such that the only sectibasmust be loaded by the kernel
are the .text, .rodata, .data, and .bss sections (C++ prsgrahich have additional sections
for constructors which run before main() and destructorgkwviun after main(), are unlikely to
work).

Programs may be linked against the 410-provided user-djmaey, andmust notbe linked
against the standard C library provided on the host systdrmay $hould be linked statically, with
the .text section beginning at the lowest address in theadsiness space. The entry point for all
user programs should be thei n() function found ind10user/tests/crtO0. c.

18

7.2 Loading User Programs

The 410 kernel must read program data from a file, and loaddteeidto a task’s address space.
Due to the absence of a file system, user programs will be tbfrde large arrays compiled into
a “RAM disk” image included in the kernel executable binary.

We have provided you with a utility}10user/ exec2obj , which takes a list of file names
of Pebbles executables and builds a single fiker _apps. ¢, containing one large character
array per executable. It also contains a table of contemtddimat of which is described in
410kern/ | i b/inc/ exec2obj.h. When a program is executed, your loader will extract the ELF
header and various parts of the executable from the relevamacter array and build a runnable
memory image of the program.

Later in the semester, there may be an opportunity to writee ayistem for the 410 kernel.
To facilitate an easy switch froexec2obj to a file system, please use tiet byt es() skeleton
found inkern/ | oader. c: it provides a crude abstraction which can be implementetbprof
eitheruser _apps. ¢ or a real file system.

Support code has also been provide@dénn/ | oader . ¢ to extract the important information
from an ELF-formatted binaryel f _check_header () will verify that a specified file is an ELF
binary, ancel f _| oad_hel per () willfill in the fields of ast ruct se (“simplified ELF”) for you.
Once you have been told the desired memory layout for an &xieleifile, you are responsible for
usingget byt es() to transfer each executable file section to an appropriateglgnized memory
region. You should zero out areas, if any, between the end®fegion and the start of the next.
The bss region should begin immediately after the end ofdhd/urite data region.

Note: the .text and .rodata (read-only data) sections okieeutable must be loaded into
memory which the task’s threads cannot modify.

8 The Programming Environment

8.1 Kernel Programming

The support libraries for the kernel include a simple C lifpra list based dynamic memory
allocator, functions for initializing the processor dataistures with default values, and functions
for manipulating processor data structures.

8.1.1 A Simple C Library

This is simply a list of the most common library functionstthee provided. For details on using
these functions please see the appropriatepages. Other functions are provided that are not
listed here. Please see the appropriate header files fdrletinlg of the provided functions.
Some functions typically found in a C standard /O librarye aprovided by
410kern/lib/libstdio.a. The header file for these functionslisOker n/ | i b/ i nc/ st di o. h.

e int putchar(int c)

19

e int puts(const char *str)

e int printf(const char *format, ...)

e int sprintf(char *dest, const char *format, ...)

e int snprintf(char *dest, int size, const char *formant, ...)
e int sscanf(const char *str, const char *format, ...)

e void Iprintf kern(const char *format, ...)

Some functions typically found in a C library are provideddd@kern/1ib/1ibstdlib. a.
The header files for these functions4itOkern/ i b/ i nc, arestdl i b. h,assert. h, mal | oc. h,
andct ype. h.

e int atoi(const char *str)

| ong atol (const char *str)

long strtol (const char *in, const char **out, int base)

e unsigned long strtoul (const char *in, const char **out, int base)
e void *mal | oc(sizet size)

e void *calloc(sizet nelt, sizet eltsize)

e void *realloc(void *buf, sizet newsize)

e void free(void *buf)

e void smemalign(sizet alignment, sizet size)

e void sfree(void *buf, sizet size)

e voi d panic(const char *format, ...)

e void assert(int expression)

The functionssnenal i gn() andsfree() manage aligned blocks of memory. That is, if
al i gnment is 8, the block of memory will be aligned on an 8-byte boundarplock of memory
allocated with smemaligmustbe freed withsfree(), which requires thesi ze parameter.
Therefore, you must keep track of the size of the block of mgrgou allocated. This interface
is useful for allocating things like page tables, which mustaligned on a page boundary. By
volunteering to remember the size, you free the storageattio from scattering block headers
or footers throughout memory, which would preclude it froffo@ating consecutive pages.
sfree(void* p, int size) frees a block of memory. This bloakusthave been allocated
by smemal i gn() and it must be of the specified size. Note that these memaryaibn facilities

20

operateonlyon memory inside the kernel virtual address range. Of cotusetions with similar
names appear in user-space libraries; those functiemsroperate on kernel virtual memory.

Also, note that what we actually provide you with, as in Pcbj@, are non-thread-
safe (non-reentrant) versions of the memory-managemémitipes (mal | oc() and friends),
with underlined names (e.gJmalloc()). Once your kernel supports preemptive context
switching, you will need to provide thread-safe wrappettirees based on whatever locking and
synchronization primitives you design and implement. Bptobably makes sense to get started
with simple “pass-through” wrappers.

The libraries we provide you with include a versiorpahi ¢() which will print out a message
and loop forever. Thassert () macro invokes thipani c() by default. However, if your kernel
provides a differenpani ¢() (which must match the existing declarationsindl i b. h), it will
override the one ihi bstdl i b. a.

Some functions typically
found in a C string library are provided B 0kern/lib/1ibstring.a. The header file for
these functions ig10kern/ | i b/inc/string. h.

e int strlen(const char *s)

e char *strcpy(char *dest, char *src)

e char *strncpy(char *dest, char *src, int n)

e char *strdup(const char *s)

e char *strcat(char *dest, const char *src)

e char *strncat(char *dest, const char *src, int n)

e int strcnp(const char *a, const char *b)

e int strncnp(const char *a, const char *b, int n)

e void *menmmove(void *to, const void *from unsigned int n)
e void *menset (void *to, int ch, unsigned int n)

e void *menctpy(void *to, const void *from unsigned int n)

8.1.2 Processor Utility Functions

These functions, declared4iOker n/ | i b/ i nc/ x86/ proc_r eg. h, access and modify processor
registers and data structures. Descriptions of theseimsctan be found elsewhere in this
document.

e voi d disable.interrupts()

e voi d enableiinterrupts()

21

e void set _cr3(void *)

e voi d set _cr3_nodebug(void *)
e voi d set _espO(void *)

e voi d *get _esp0()

o voi d *sidt()

8.1.3 Build Infrastructure

The providedvakef i | e takes care of many of the details of compiling and linkingkbenel. It
is important, however, to understand how it works. Once yopiack the Project 3 tarball, you
should readREADME andconf i g. nk and fill in the latter according to the directions.

It is also important that you pay attention to the directary&ure. In particular, files in
410kern and410user should be treated as read-only. While you might occasipmaded to
temporarily modify or instrument library routines for dejging purposes, the update process will
overwrite any such changes. When we grade your kernel wauigelthe “supported” versions of
those files, so changes you maikd be wiped out.

The Makefi | e is configured to allow you to choose when updates take effecrder to
provide you with debugging flexibility. However, this meahat it will be your responsibility to
incorporate support-code changes early enough that yodedaung any issues before the project
deadline. Basically, ifreke starts beeping, don'’t just ignore it!

8.2 User Programming

User programs which run on your kernel will have access tostmae C library which was
available in Project 2. However, the console output fumdiwill not work until your kernel
implements ther i nt () system call.

8.3 Simulator versus Reality

While most executions of your kernel will be in tlsénm cs environment, be sure to consider
how your kernel would behave if it were executed on real haréwin particularVAG C_BREAK,
| printf_kern(), andSl Mhal t () all have no effect if your code isn’t running insidemni cs.
If your kernel would fail spectacularly in such a situatigour grader will probably notice and
be less impressed than you might wish.

While this is entirely optional, if you wish to try booting yio kernel in a norsi ni cs
environment, you have several options:

e A commercial emulation environment such\ééwar e or Virtual PC

e Other PC hardware simulatof®ohs, GEMJ, ...)

22

e Real hardware. If you don’t have access to a rebootable PICavRS/2 keyboard, you
can try Dr. Eckhardt’s office hours, as he has an easily-rigold®C. To try it on your own,
merely use the Unidd command to transfer younoot f d. i ng file onto a blank, freshly-
formatted floppy, check to make sure that the floppy drive igaar BIOS’s boot order,
and try a reboot.

9 Hints on Implementing a Kernel

In this section you will find a variety of suggestions and exatons. We certainly do not expect
each kernel to follow every suggestion contained hereityu will probably find at least one of
them attractive enough to implement it, at which point weestgyou will judge it to have been a
worthwhile investment of your time.

9.1 Code Organization

e You may wish to invest in the creation of a trace facility.teed of Iprintf() calls scattered
at random through your code, you may wish to set up an infretstre which allows you to
enable and disable tracing of a whole component at once {leegscheduler) and/or allow
you to adjust a setting to increase or decrease the gratyuérnessage logging.

e Some eventualities are genuinely fatal in the sense thia thao way to continue operation
of the kernel. If, for example, you happened to notice tha timead had overflowed its
kernel stack onto the kernel stack of another thread, thexddibe no way to recover a
correct execution state for that thread, nor to free up gsueces. In such a situation the
kernel is broken, and your job is no longer to arrange thirkgsrlet urn(- 1) , but instead
to stop execution as fast as possible before wiping out datehveould be used to find and
fix the bug in question. You will need to use your judgementl&ssify situations in to
recoverable ones, which you should detect and recover faochunrecoverable situations
(such as data structure consistency failures), for whiahsteouldnot write half-hearted
sort-of-cleanup code.

These considerations may suggest that you make use dadsext () macro facility
provided by410user/lib/inc/assert.hand410kern/lib/inc/assert.h.

e Avoid common coding mistakes. Be aware that will not warn about possible unwanted
assignments inf , andwhi | e statements. Also, note the difference betwetoo- >bar,
and! (foo->bar) . Practicing Pair Programming can help avoid these kindsistakes.

9.1.1 Encapsulation

Instead of typing linked-list traversal code 100 times tlyloout your kernel, thus firmly and
eternally committing yourselves to a linear-time datadtrte, you should attempt to encapsulate.

Iwhile it is not rare for a kernel to log messages using impdilitguistic constructs, it rare for this to improve
the kernel's reception with course staff.

23

Don’t think of a linked list of threads; think of sets or graupf threads: live, runnable, etc.

Likewise, don’t write a 2,000-line page fault handler. bwd of ignoring the semantic
properties shared by pages within a region, use those irepr your advantage. Write smaller
page-fault handlers which encapsulate the knowledge saet handlsomepage faults. You
will probably find that your code is smaller, cleaner, andexa® debug.

Encapsulation can allow you to defer tricky code. Insteadngflementing the “best” data
structure for a given situation, you may temporarily hidewadr-quality data structure behind an
interface designed to accommodate the better data steucunce your kernel is stable, you can
go back and “upgrade” your data structures. While we willgratet a chock-full-of-linked-lists
kernel or a wall-of-small-arrays kernel with cries of jopdadata structure design is an important
part of this exercise, achieving a complete, solid impletagon is critical.

9.1.2 Synchronization

If you find yourself needing something sort of like a conditiariable,don’t throw away the
modes of thought you learned in Project 2. Instead, use wihatgarned as an inspiration to
design and implement an appropriate similar abstractisiéyour kernel. If you can do this
withoutnal | oc() /f ree() traffic, that might be worthwhile.

Likewise, you have multiple options for ensuring that a giwequence of kernel code is
not interrupted by a conflicting sequence. One approach dvbalto litter your code with
di sabl e_i nterrupts(), but there are at least two other approaches. Regardlesbaifywu
settle on, you probably want to consider which “flavor” of mwityou need... you might need
something like a counting mutex, or you might need to havguia” and “special” mutexes.

One way to improve your synchronization design is to pretgmdre designing your kernel
to run on a multi-processor machine. This will make it cldattinterrupt-disabling genuinely
addresses only a small fraction of the synchronizationlprob a kernel faces.

Another design aid is making sure that your approach scelasexample, it should be easy
to add new device drivers to your kernel without cutting,timas and renaming synchronization
code.

9.1.3 Method tables

You canpractice modularity and interface-based design in a lagguwathout objects. In C this
is typically done via structures containing function-geinfields. Here is a brief pseudo-code
summary of one basic approach (other approaches are valjd to

struct device_ops {

void (*putchar)(void *, char);
int (*getchar)(void *);

b

struct device_ops serial _ops = {
serial _putchar, serial_getchar

24

¥

struct device_ops pipe_ops = {
pi pe_put char, pipe_getchar
b

struct device_object {
struct device_ops *opsp;
void *instance data;

b

voi d putchar(struct device object *dp, char c)
{ (dp- >opsp->put char) (dp->i nstance_data, c);
}

void init(void)

{

struct device_object *dl, *d2;

dl = new pi pe_object();

d2 = new serial _object();

putchar(dl, "1'); /* pipe_putchar(dl->instance data, '1'); */
putchar(d2, '2'); /* serial _putchar(d2->instance_data, '2'); */

9.1.4 Embedded Traversal Fields

Imagine a component is designed around a linked list. It ne@yrsnatural to re-invent the Li$p
“cons cell”:

struct listitem/{
struct listitem *next;
void *itemitself;

}

The problem with this approach is that you are likely to aalll oc() twice as often as you
should—once for each item, and once for the list-item stméct Sincemal | oc() can be fairly
slow, this is not the best idea, even if you are comfortabkdidg with odd outcomes (what if
you can allocate the list item but not the data item, or theothay around?).

Often a better idea is to embed the traversal structurearthiel data item:

2or, for you young whippersnappers, ML

25

struct itemitself {
struct itemitself *next;
int fieldl;
char field2;

}

This cuts youmal | oc() load in half. Also, once you understand C well enough, it isgiole
to build on this approach so you can write code (or macrosghvhill traverse a list of threads
or a list of devices.

Isn’t this an encapsulation violation? It depends...ifé'gbody knows” that your component
does traversal one way, that is bad. If only your componenf®rted methods know the traversal
rules, this can be a very useful approach.

9.1.5 Avoiding the malloc()-blob Monster

There is one particular place in your kernel where the cafisapproach (aka “little malloc()
blobs”) is particularly inappropriate. Before you commaiily kernel to containing thousands of
them, it is probably wise to compute their true size cost.sMaill probably involve recalling
somenal | oc() internals from 15-213, computing roughly how many blobs ydend to create,
and considering the size of the memory pool they will be dréneom.

9.1.6 List Traversal Macros

You may find yourself wishing for a way for a PCB to be on muklifists at the same time
but not relish the thought of writing several essentiallgritical list traversal routines. Other
languages have generic-package facilities, but C doeHmtever, it is possible to employ the
C preprocessor to automatically generate a family of sinfulactions. If you wish to pursue this
approach, you will find a template availablevig_chal | enge/ vari abl e_queue. h.

9.1.7 Accessing User Memory

System calls involve substantial communication of datavbeh user memory and kernel
memory. Of course, these transfers must be carefully dedigm avoid giving user code the
ability to crash the kernel.

You will discover that there are many potential hazardstelad of checking manually for
each hazard every time you read or write some piece of useronyeyou may find it useful
to encapsulate this decision-making in some utility roeginlf you think about how and when
these routines are used, you may find that you can piggybasle thazard checks onto another
operation, resulting in a pleasant package.

9.2 Task/Thread Initialization

e Task/thread IDs - Each thread must have a unique integer thread ID. Sincetagen
allows for over two billion threads to be created before oeing its range, sequential

26

numbers may simply be assigned to each thread created Wwitlhmuying about the
possibility of wrap-around — though real operating systdmg/orry about this. The thread
ID must be a small, unique integer, not a pointer.

It is desirable for the data structure used to map a thread I3 thread control block to be
efficient in space and time. One possible implementationavoe a hash table indexed by
thread ID. Time pressure may argue for simpler data strastuvhich may be employed if
they are appropriately encapsulated.

e thread_fork-Onafork(),anew task ID is assigned, and kernel state is allocated for
the new schedulable entity, which will use the resourceb®irvoking thread’s task. The
new thread will have identical contents in all user-visitdgisters excepteax, which will
contain zero in the new thread and the new thread’s ID in ttétwkad.

e fork() - On afork(), a new task ID is assigned, the user context from the running
parent is copied to the child, and a deep copy is made of thepaiaddress space. Since
the CPU relies on the page directory/page table infrastrad¢b access memory via virtual
addresses, both the source and destination of a copy musappech at the same time.
This does not mean that it is necessary to map both entiressidpaces at the same time,
however. The copy may be done piece-meal, since the adgr@ssssare already naturally
divided into pages.

Any time you insert a “fake” mapping into a task’s page talde yhould realize that this
mapping will probably make its way into the TLB and may pdr#iere for an indefinite
period of timeafter you remove the mapping from the page taBlee Sectio2.3.3for one
approach to solving this problem.

e exec() - On anexec(), the stack area for the new program must be initialized. The
stack for a new program typically begins with only one pageneimory allocated. It is
traditional for the “command line” argument vector to ocgupemory above the run-time
stack.

9.3 Thread Exit

You will find that there are subtle issues associated witlbkmga thread or task to exit cleanly,
so it's a good idea to pseudo-code how this will work and wihes & will interact with.

As you will discover during your design (or else during yaupiementation), thread exit will
involve freeing a variety of resources. Furthermore, tlieiehcy of the system is increased if
you can free resources quickly so they are available forrdtiteads to use. Optional challenge:
how small can you make “zombie threads” in your system? A#gvely, how many of the
thread’s resources can the thread itself free, as opposetyitog on outside help?

9.4 Kernel Initialization

Please consider going through these steps ik¢heel _mai n() function.

27

e Initialize the IDT entries for each interrupt that must badiad.
e Clear the console. The initialization routines will leaveass.
e Build a structure to keep track of which physical frames areaurrently allocated.

e Build the initial page directory and page tables. Direct nttagpkernel’s virtual memory
space.

e Create and load the idle task. For grading purposes, you ssay@e that the “file system”
will contain a (single-threaded) executable cailétie which you may run when no other
thread is runnable. Or you may choose to hand-craft an idigrpm without reference to
an executable file.

e Create and load theni t task. For grading purposes, assume that the “file systenh” wil
contain an executable calledi t which will run the shell (or whatever grading harness
we decide to run). During your development, t should probably ork() a child that
exec() s the program i10user/ progs/ shel | . c. Itis traditional fori nit to loop on
wai t () in order to garbage-collect orphaned zombie tasks; it ig &bditional for it to
react sensibly if the shell exits or is killed.

e Set the first thread running.

N.B. Suggesting thater nel _mai n implements these functions dasst imply that it must do
S0 via straight-line code with no helper functions.

9.5 Memory Management Operations

You will probably find that the x86 virtual memory hardwaredsmplex enough to suggest

multiple ways of implementing critical operations such ddrass-space copying. Your design
should probably assume that invalidating a particular eslltranslation is much cheaper than
invalidating many or all address translatioms massewhich in turn is dramatically cheaper

than disabling paging. Meanwhile, the complexity of an afien should be balanced against
its frequency. Overall, a plan which would disable and emglzging repeatedly in an inner

loop probably represents a serious and unnecessary parioenproblem (the kind your grader

dislikes).

10 Debugging
10.1 Requests for Help
Please do not ask for help from the course staff with a medgagthis:

I’'m getting the default trap handler telling me | have a gah@rotection fault.
What's wrong?

28

or

| installed my illegal instruction handler and now it’s tety me I've executed an
illegal instruction. What’s wrong?

An important part of this class is developing your debuggkigls. In other words, when you
complete this class you should be able to debug problemswioic previously would not have
been able to handle.

Thus, when faced with a problem, you need to invest some tinfegguring out a way to
characterize it and close in on it so you can observe it in th@shact of destruction. Your reflex
when running into a strange new problem should be to starkiting, not to start off by asking
for help.

Having said that, if a reasonable amount of time has beert syerg to solve a problem and
no progress has been made, do not hesitate to ask a questibpleBse be prepared with a list
of details and an explanation of what you have tried and ralgdo far.

10.2 Debugging Strategy

In general, when confronted by a mysterious problem, yowlshioegin with a “story” of what
you expectto be happening and measure the system you're debugging tehsere its behavior
diverges from your expectations.

To do this your story must be fairly detailed. For exampley gbould have a fairly good
mental model of the assembly code generated from a giveofi@ecode. To understand why “a
variable has the wrong value” you need to know how the vagiabinitialized, where its value is
stored at various times, and how it moves from one locatiantither. If you're confused about
this, it is probably good for you to spend some time vgtla - S.

Once your “story” is fleshed out, you will need to measure §fstesn at increasing levels of
detail to determine the point of divergence. You will find yself spending some time thinking
about how to pin your code down to observe whether or not &cpdéat misbehavior is happening.
You may need to write some code to periodically test datacgire consistency, artificially cause
a library routine to fail to observe how your main code resfgmihog actions taken by your code
and write a log-analyzer perl script, etc.

Please note that the kernel memory allocator is very sinldahe allocator written by 15-
213 students in the sense that when the allocator reportgeerrial” consistency failure, this
is overwhelminghikely to mean that the user of some memory overflowed it andupted the
allocator’'s meta-data. In other words, even though ther esreeportedby | rmfree(), it is
almost certainly not an erran | rmfree().

10.3 Kernel Debugging Tools

There are a number of ways to go about finding bugs in kernet.cdtie most direct way for
this project is to use the Simics symbolic debugger. Infdaromaabout how to use the Simics

29

debugger can be found in the documentation on the coursate/ébB0/ si m cs/ doc), and by
issuing thenel p command at the simics prompt.

Also available is theMAG C_.BREAK macro defined ird10kern/ | i b/inc/ kerndebug. h.
Placing this macro in code will cause the simulation to stxpporarily so that the debugger
may be used.

The function calll printf kern() may also be used to output debugging messages to the
simics console, and to the file kernel.log. The prototyped for ntf _kern() can be found in
410kern/lib/inc/stdio.h.

10.4 User Task Debugging

Symbolic debugging user tasks can be useful in the coursenain§ bugs in kernel
code. TheMAG CBREAK macro is also available to user threads #iyncl udeing the
410user/inc/ magi c_break. h header file.

The function call printf () may be used to output debugging messages from user programs.
Its prototype is imMd10user/1ib/inc/stdio.h.

Symbolic debugging of user programs involves some set-upnicS can keep track of
many different virtual memory spaces and symbol tables bga@ating the address of the page
directory with the file name of the program.

Simics must switch to the appropriate symbol table for theesu address space as soon as a
new value is placed ificr 3. For this to work, you must do several thingsthis order.

1. Before loading user programs, of course you should hagmg@a&nabled.

2. As a new program is loaded, register its symbol table wiitmi& with a call to
SI Mregi st er _user _proc(), defined id10kern/ | i b/inc/ ker ndebug. h.

3. Every time you switch user address spacessef cr 3_debug(), the Simics magic-
break instruction will be used to tell the Simics debuggeswotch symbol tables. If
you believe you must change the value%f 3 in assembly language, simply copy the
relevant instructions from theet _cr 3_debug() we provide. Alternatively, you may call
SIMswi t ch() to change the debugger’s idea of which thread is runningamitbhanging
%r 3 (though most groups won't feel a need to do this).

4. Finally, when a task exits, please make a caflitdunr egi st er _user _proc() defined in
ker ndebug. h.

If you do not wish to enable debugging of user threads, sirdplyot register threads with
Simics, and use the macset _cr 3() instead oket _cr 3_debug() . But we recommend that you
do enable user-space debugging, because it is easy andyn#itantly improve your debugging
experience.

30

10.5 Test Programs

You should expect to write some programs to test variousifeatof your kernel. While many of
these may be one-time throw-away programs, you may find gtwsiting a few more-involved
(and hence more useful) programs. You may share these withfyends. However, we would
appreciate it if you run test programs past the course s#dfirb posting them more widely—
the best mechanism would be to place candidate programsuimygr oup/ scr at ch directory
and send mail to the staff mailing list. You will probably Wi include your names, Andrew
usernames, and semester in the program output, espetiattyend up incorporating your code
into future editions of the class.

11 Checkpoints

The kernel project is a large project spanning several we®ker the course of the project the
course staff would like to review the progress being made it reason, there are checkpoints
that will be strictly enforced. The checkpoints exist sa ihgportant feedback can be provided,
and so should be taken very seriously.

Don’t be complacent about missing “just one” checkpointtc@eg up ishard: if you're
“merely” a week behind, that means you need to work twice ad foa an entire week in order
to catch up...

As each checkpoint arrives, we will create a correspondingicectory for you to hand in
your code. We will generally not grade checkpoint code subrssions, but they have proven
to be a valuable reference in past semesters. For Checkpoifitne you will place your code
in p3ck1, etc.

11.1 Checkpoint One

For Checkpoint One, you should have a user task (with onadhitdat can caljetti d(). This
sounds simple, but it involves quite a bit of work which youlywrobably need to plan carefully.
Strive to document most of this cotéeforeyou write it.

1. Draft fault handlers — you may end up re-writing these iyl challenge: can you
generatehese extremely repetitive assembly functions with C mre@ssor macros?).

2. Draft system call handler for gettid()

3. Draft pcb/tcb structures — think about the task/thredi sarly, in terms of how thread
creation and exit will work.

4. Basic virtual memory system

e Dummy up a physical-frame allocator (allocate-only, n@jre
e Spec and write page-directory/page-table manipulatiatimes

31

e Spec and write draft “address space manager” (probableahtround a “region
list” with a list of per-region-type “methods”).

5. Rough first-program loader

e Set up atask.

Set up a thread.

Initialize various memory regions.

Decide on register values.
Craft kernel stack contents.

Set various control registers.

You may find that there are many ways f&ET to go awry. If so, it might be useful to see
how many of the possibilities can be eliminated if you tengppre-work your code so a
RET instruction would work instead. Otherwise, you might finefus strategy suggestions
in the “Debugging” lecture.

11.2 Checkpoint Two

For Checkpoint Two, it should be possible for two threadslfpbly belonging to two different
tasks, which may be hand-loaded) to context-switch backantial, andeitherf or k() orexec()
(your choice) should work.

Reaching Checkpoint Two will be much easier if your code fbe€kpoint One was carefully
designed and modular.

11.3 Checkpoint Three

For Checkpoint Three, roughly the third week of the projgci should have approximately

half of the system calls and exception handlers done. Nateytbu should count by lines of

code rather than by number of entry points—some are easierdtners. For example, the page
fault handler, which will require noticeable thought anglementation, is probably 50% of the
exception-handler implementation by itself.

11.4 Week Four

While we will probably not collect any further checkpointy,the fourth week of the project you
shouldreally have at least started all of the system calls.

11.5 Week Five

You should aim to have all of your code written, by the end ¢f theek. You will have plenty of
bugs and rewriting to keep you busy in the last week (realggmember to focus your effort on

32

getting the core system calls working solidly—you won’'tp#se test suite if we can’t boot your
kernel, launch the shell, and have it run commands.

12

Strategy Suggestions

Before we begin, we'd like to recommend to you the sage wofd$5e410 student Anand
Thakker.

Each time you sit down to write code, pause to remind youtlatfyou love yourself,
and that you can demonstrate this love by writing good codgdarself.

Here are further suggestions:

You will probably end up throwing away and re-writing somenttavial piece of code.
Try to leave time for that.

As you progess through the project, you should acquire thiéyetb draw detailed pictures
of every part of the system. For example, if you come see thesecstaff about a problem,
we may well ask you to draw a picture of the thread stack at ¢t pvhere the problem is
encountered. We may also ask you to draw pictures of a taalge tables, virtual address
space, etc. In general, at several points in the project yibbmeed to draw pictures to get
things right, so get in the habit of drawing pictures when’sein trouble.

Try to schedulat leastthree chunks of time every week, eaateasttwo hours long, to
meet with your partner. You will need to talk about each dthende, update each other
on bug status, assign or re-assign responsibility for céalekb or particular bugs, etc.

You should really be familiar with your partner’s code. You will need to answer exam
guestions based on it.

Since a code merge takes time at least proportional to tlee-imnérge time, you should
probably merge frequently. If you work independently foefiveeks, it will probably take
you a week to merge your code, at which point you will have neetto debug it.

Merging can be much easier if you use branches. For examptepartner can implement
fork() while the other implementseadl i ne(). Each can work on an independent
branch, committing every hour or so, rolling back if necegsadding test code, etc. Once
ther eadl i ne() implementor is done, she can merge the most recent revisibardranch
against the trunk. Her partner can then merge from the tmigkhis working area. This
will probably result in a non-functional kernel, but obsethat the first partner’s branch,
the trunk, and his branch should all be ok and kernels can &ekeld out and built from
all of them. By the way, make sure you're not asking your setgentrol system to store
every version of random or binary files suchkasnel . | og, kernel , boot f d. i ng, and so
forth—that’s an easy way to run out of disk space.

If you are paranoid, there is no reason why you shouldn’t siocelly snapshot your
repository to a safe location in case your source contraesygoes haywire on you.

33

13

Plan of Attack

A recommended plan of attack has been developed. While yguhetachoose to do everything
in this order, it will provide you with a reasonable way to gttrted.

If you find yourself embarking on a plan which ésamaticallydifferent from this one, or
a kernel architecture which is dramatically different fravhat we've discussed in class, you
should probably consult a member of the course staff. It ifequossible that your approach
contains a known-to-be-fatal flaw.

1.

10

Read this handout and gain an understanding of the assignnirirst, understand the
hardware, and then the operations that need to be implethei@pend time becoming
familiar with all of the ways the kernel could be invoked. Wihappens on a transition
from user mode to kernel mode? What happens on a transitom Kernel mode to user
mode?

. Review the kernel-specification document. Generaté aflihe underlying modules each

system call and exception handler will rely on, and alsotaofis©vazards or challenges for
each kernel entry point.

. Write pseudocode for the system calls as well as the ugehandlers, paging system, and

context switcher. Start by writing down how all of these gigfit together. Next, increase
the level of detail and think about how the pieces break dowm functions. Then, write
detailed pseudocode.

Based on the above step, rough out the Task Control BlodKTanead Control Blocks.
What should go in each?

. Write functions for the manipulation of virtual addregmeses. Direct map the kernel’'s

virtual memory space. Keep track of free physical framesgufg out to allocate and
deallocate frames outside the kernel virtual space so theye assigned to tasks (optional
challenge: can you do this in a way which doesn’t consume rkemeel virtual space for
management overhead as the size of physical memory groges Par

Now that there is an initial page directory, it is posstolenable paging. Do so, then write
the loader. Create a PCB for the idle task. Load and run tleetask.

Implement theget ti d() system call. Once this is working, the system call interfisce
functioning correctly. Congratulations! You have reachbdckpoint one.

. Write the timer interrupt handler. For now, simply verthat the IDT entry is installed

correctly, and that the interrupt handler is running.

. Write functions for scheduling and context switchingaba second task. Have the timer

interrupt handler context switch between the first and sa:task.

. Implement or k() orexec(). At this point you will have reached checkpoint two.

34

11

12.
13.

14.
15.

16.

17.

18.
19.

20.
21.

22.

23
24

. Implemenexec() orfork(), whichever one you skipped before. You can test how they
work together by having the init task spawn a third user tadstom this point forward
your old code to hand-load a task should be invoked only ont¢&ioe, to loadi nit and
possiblyi dl e.

Implement théal t () system call. Why not? It's easy enough.

Take a few moments to get user-space symbolic debuggaigex—it's better to do it now
than to decide in the last few days that you really need ih{ragvay!) only to run into
some bug getting it to work.

Implement th@ew_pages() system call, and test it with the user-maus | oc() .

Write a page fault handler that frames new pages on legakaes to the automatic-stack
region, and prints debugging information on bad accessas dye probably not ready to
kill threads at this point).

Integrate the keyboard interrupt handler and the cerdiaver into the kernel. Install an
entry for the keyboard in the IDT.

Implement a rough version of thmeadl i ne() system call. If you haven't confronted
thread sleep/wakeup yet, you may want to dodge the issuednaggh to get the shell
running, but you can't put it off forever. You may also wishacho input characters in a
simplistic way.

Implement therint (), set _termcol or(), andset _cursor pos() system calls.

Implementai t () andexit() (this is not easy!). Please take care tbatt () is not
grossly inefficient. At this point, the shell should run, aywl can argue that you have
written an operating system kernel. This is roughly cheakigbree.

Fill out the page fault handler. Threads should be kitledbad memory accesses.

Implement thesl eep() system call. Recall that the round-robin scheduler shouitd r
in constant time. It idad if your scheduler typically requires run-time proportibta

the number ofhon-runnablethreads. Hmm... Also, while the kernel spec necessarily
authorizes some degree of sleep-time imprecision, that'she same as authorizing you
to ignore the tick count.

If you haven't already, start running tests from the tste provided by the course
staff. From this point on, every time you complete a systetharafeature you should
immediately try any tests which are thereby enabled. Rementhe “test after code
complete” approach is an excellent way to obtain all sorthioigs you don’t want.

. Implement thgi el d() , deschedul e(), andmake_r unnabl e() system calls.

. Implement hread_f ork(), and test it using your thread library.

35

25.

26.

27.

28.

29.
30.

Go back and fill in any missing system calls. Anywhere yelied on a dummy
implementation of some critical feature, replace the maés of the interface with
something better.

Now might not be a bad time to upgrade yoead! i ne() if your previous implementation
cut some corners. If you have extra design time, you mightt wathink about ways to
structure your keyboard interrupt handler and ottesrd| i ne() code to make it easy to
implementget char () .

Write many test cases for each system call. Try to breakemel, since we will and you
want to get there first... One thing which has proven progtladtir many students is varying
the frequency of timer-driven context switches. Be suré¢ yioa restore your kernel to a
reasonable switching interval (10-50 milliseconds) befau submit your project, though.

Make a cleanup pass through your code to remove spii@i€ BREAK invocations, dead
code, and other untidy potential sources of grader anguish.

At this point youlREADVE. dox should contain an accurate known-bug list.

You're done! Celebrate!

36

	Introduction
	Overview
	Goals
	Technology Disclaimer
	Important Dates
	Groups
	Grading
	Interactions between Project 3 and Project 4
	Hand-in

	Hardware Primitives
	Privilege Levels
	Segmentation
	Special Registers
	The Segment Selector Registers
	The EFLAGS Register
	Control Registers
	The Kernel Stack Pointer
	C interface

	Paging
	The Layout of Physical Memory

	The Boot Process
	Device Drivers and Interrupt Handlers
	Interrupts, Faults, and Exceptions
	Hardware Interrupts
	Software Interrupts
	Faults and Exceptions
	Interrupt Handler Flavors
	Writing an Interrupt Handler
	Interrupts and Preemption

	Device Drivers
	Floating-Point Unit

	Context Switching and Scheduling
	Context Switching
	Scheduling
	Scheduling, Sleeping, and Synchronization
	Convolution

	System Calls
	The System Call Interface
	Validation
	Specific System Calls

	Building and Loading User Programs
	Building User Programs
	Loading User Programs

	The Programming Environment
	Kernel Programming
	A Simple C Library
	Processor Utility Functions
	Build Infrastructure

	User Programming
	Simulator versus Reality

	Hints on Implementing a Kernel
	Code Organization
	Encapsulation
	Synchronization
	Method tables
	Embedded Traversal Fields
	Avoiding the malloc()-blob Monster
	List Traversal Macros
	Accessing User Memory

	Task/Thread Initialization
	Thread Exit
	Kernel Initialization
	Memory Management Operations

	Debugging
	Requests for Help
	Debugging Strategy
	Kernel Debugging Tools
	User Task Debugging
	Test Programs

	Checkpoints
	Checkpoint One
	Checkpoint Two
	Checkpoint Three
	Week Four
	Week Five

	Strategy Suggestions
	Plan of Attack

