
Introduction LFL Insert LFL Delete Tradeoffs Alg

Lock-free Programming

Nathaniel Wesley Filardo

November 20, 2006

1 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Outline

Introduction

Lock-Free Linked List Insertion

Lock-Free Linked List Deletion

Tradeoffs

Some real algorithms?

2 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

� Suppose some madman says “We shouldn’t use locks!”

� You know that this results (eventually!) in inconsistent
data structures.

� Loss of invariants within the data structure
� Live pointers to dead memory
� Live pointers to undead memory (Hey, my type changed!

Stop poking there!)

� Well, the madman insists, so here goes...

3 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Lock-Free Linked List Insertion

Lock-Free Linked List Node
Insertion into a Linked List Without Locks
Review of Atomic Primitives
Insertion into a Lock-free Linked List: Simple case
Insertion into a Lock-free Linked List: Race case

4 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Lock-Free Linked List Node

� Node definition is simple:
void* data

void* next

5 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Insertion into a Linked List Without Locks
Insertion Code

insertAfter(label, data) {
new = newNode(data);

prev = findLabel(label);

new->next = prev->next;

prev->next = new;

}

6 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Insertion into a Linked List Without Locks
Precondition

A &E // E NULL

� One list, two items on it: A and E .

7 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Insertion into a Linked List Without Locks
First step

C NULL

A &E // E NULL

D NULL

� Two threads get two nodes, C and D and want to insert.

� Thread 1: new = newNode(C);

� Thread 2: new = newNode(D);

� prev = findLabel(A); /* Gives &A to both */
8 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Insertion into a Linked List Without Locks
Second step

C &E

&&NNNNNNNNNNNNN

A &E // E NULL

D &E

88ppppppppppppp

� Two threads point their respective nodes C and D into
list at E

� new->next = prev->next;

9 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Insertion into a Linked List Without Locks
One thread goes

C &E

&&NNNNNNNNNNNNN

A &C

``BBBBBBBB

E NULL

D &E

88ppppppppppppp

� One of the two goes (here the thread owning C ). . .

� prev->next = new;

10 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Insertion into a Linked List Without Locks
And the other. . .

C &E

&&NNNNNNNNNNNNN

A &D

~~||
||

||
||

E NULL

D &E

88ppppppppppppp

� And the other (owning D). . .

� prev->next = new;

� This loses a node! (Nobody notices that C is no longer
on the list)

11 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Review of Atomic Primitives

� XCHG (ptr, val) atomically:
� old val = *ptr
� *ptr = val
� return old val

� CAS (ptr, expect, new) atomically:
� if ( *ptr != expect ) return *ptr;
� else return XCHG (ptr, new);

� Note that CAS is no harder - it’s a read and a write; the
logic is free (it’s on the chip).

12 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Review of Atomic Primitives

� Notice that we can use CAS to rescue this procedure.

� So let’s rewrite that insertion code to be
insertAfter(label, data) {

new = newNode(data);

do {
prev = findLabel(label);

new->next = prev->next;

} while

( CAS(&prev->next, new->next, new)

!= new->next);

}

13 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Insertion into a Lock-free Linked List: Simple

case
Setup

A &E // E NULL

C NULL

� Some thread constructs the bottom node C ; wishes to
place it between the two above, A and E .

� new = newNode(C);

� prev = findLabel(A);

14 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Insertion into a Lock-free Linked List: Simple

case
First step

A &E // E NULL

C &E

88ppppppppppppp

� Thread points C node’s next into list at E .

� new->next = prev->next;

15 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Insertion into a Lock-free Linked List: Simple

case
First step

A &C

~~||
||

||
||

E NULL

C &E

88ppppppppppppp

� CAS(&prev->next, new->next, new);

16 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Insertion into a Lock-free Linked List: Race

case
First step

C NULL

A &E // E NULL

D NULL

� Two threads get their respective nodes C and D.
� new = newNode(...);

� prev = findLabel(A);
17 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Insertion into a Lock-free Linked List: Race

case
First step

C &E

&&NNNNNNNNNNNNN

A &E // E NULL

D &E

88ppppppppppppp

� Both set their new node’s next pointer.

� new->next = prev->next;

18 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Insertion into a Lock-free Linked List: Race

case
One thread goes

C &E

&&NNNNNNNNNNNNN

A &C

``BBBBBBBB

E NULL

D &E

88ppppppppppppp

� One of the two goes (here the thread owning C won). . .

� CAS(&prev->next, new->next, new)

19 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Insertion into a Lock-free Linked List: Race

case
And the other. . .

C &E

&&NNNNNNNNNNNNN

A &C

``BBBBBBBB

~~

E NULL

D &E

88ppppppppppppp

� And the other (owning D). . .
� CAS(&prev->next, new->next, new)

� Fails since prev->next == &C and new->next == &E.
� So this thread tries again. 20 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

That’s great!

� This works fine for data structures supporting only insert
and scan.

� How many data structures are like that?

21 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Deletion is easy?

� Suppose we have

C &E

&&NNNNNNNNNNNNN

A &C

``BBBBBBBB

E NULL

� And want to get rid of C .

� So CAS(&A.next, &C, &E)

22 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Deletion is easy?

� Now we have

C &E

&&NNNNNNNNNNNNN

A &E // E NULL

� Great, looks like deletion to me!

23 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Deletion is easy?
Continued

� But imagine there was another thread accessing C (say,
scanning the list).

��
C next

''OOOOOOOOOOOOO

A next // E next

� We have no way of knowing this, so for correctness we
must not free(C).

24 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

ABA Problem

� A problem of confused identity

global = malloc(sizeof(Foo))
local1 = global local2 = global
global = NULL

free(local1)
global = malloc(sizeof(Foo))

/* Validity check */
if ( global == local2 )
global->foo baz = . . .

� Even though local2 and global might share the same
value, they don’t really mean the same thing.

25 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

ABA Problem
� So, for a “deleted” node (often “logically deleted

node”). . .
� Let’s just leave it detached from the list, marking it

somehow as deleted.

C INVALID

A &E // C NULL

� Other threads will fail their operations and restart.
� We might have a free list of available nodes, even. . .

� Some published implementations do this, leaving as an
exercise to syncrhonize all threads to delete the the list
and free list when everybody’s done.

� See [1] (linked & skip lists).
26 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

ABA Problem
Now reusing memory. . .

� We might have a somewhat complex case of a sorted list

A &D

''NNNNNNNNNNNNN E NULL

D &E

bbEEEEEEEE

27 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

ABA Problem
Now reusing memory. . .

� Thread X trying to insert C after A starts up its dance...

� So we now have

A &D

''NNNNNNNNNNNNN E NULL

C &D // D &E

bbEEEEEEEE

28 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

ABA Problem
Now reusing memory. . .

� Somebody comes in and deletes D.

� So we now have

A &E //

''

E NULL

C &D // D INVALID

dd

� There is a deleted node (D, bottom right) that was the
next of A when thread X started running

29 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

ABA Problem
Now reusing memory (part 2)

� Another thread, Y , now reclaims deleted node, labels it B
and points it to E .

� So now we have

A &E //

&&

E NULL

C &B // B &E

bbEEEEEEEE

� Thread X still trying to insert C after A. Been preempted
for “a while”

30 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

ABA Problem
Now reusing memory (part 3)

� Thread Y now inserts the reclaimed node where it
belongs! (using CAS, of course)

� Trying for a sorted list with

A &B

&&NNNNNNNNNNNNN E NULL

C &B // B &E

bbEEEEEEEE

� Thread X still trying to insert “C” after “A”. Been
preempted for “a while”

31 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

ABA Problem
Now reusing memory (part 4)

� Thread X wakes up, and the CAS works (!) giving instead

A &C

~~||
||

||
||

E NULL

C &B // B &E

bbEEEEEEEE

32 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

ABA Problem
Woah, what just happened?

A &C

~~||
||

||
||

E NULL

C &B // B &E

bbEEEEEEEE

� But {A, C , B , E} isn’t sorted!

33 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Fixing ABA

� It turns out that we need a more sophisticated delete
(and maybe insert and lookup!) function. Look at [1] or
[3] (or others) for more details.

� Generation counters are a simple way to solve ABA

34 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Fixing ABA

� Imagine that instead of CAS we had CAS2, which operates
on two words at once:
CAS (ptr, expect1, expect2, new1, new2)
atomically:

� if (*ptr != expect1 || *(ptr+1) != expect2)
� return {*ptr, *(ptr+1)};

� else
� *ptr = new1; *(ptr+1) = new2;
� return { expect1, expect2 };

35 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Fixing ABA

� If we keep a generation counter at each site and CAS2 the
pointer and the generation counter, some “reasonably
large” number of pointer updates are all to unique values.

36 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Fixing ABA

� From the above example, the initial list might have
looked like

A &D, 0

''NNNNNNNNNNNNN E NULL, 0

C &D, 0 // D &E, 0

ccFFFFFFFFF

37 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Fixing ABA

� Deletion of D might make it look like

A &E, 1 //

''

E NULL, 0

C &D, 0 // D INVALID

cc

38 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Fixing ABA

� Insertion of B might make it look like

A &B, 2

''NNNNNNNNNNNNN E NULL, 0

C &B, 0 // B &E, 0

cc

� 2 != 0 so we’re saved!

39 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Tradeoffs
Locks Can Be Expensive

� Consider XCHG style locks which use
while( xchg( &locked, LOCKED ) == LOCKED )

as their core operation.

� Each xchg flushes the processor pipeline. . .

� We could spend a long time here waiting or yielding. . .

� This implies we’ll have very high latency on contention. . .

40 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Tradeoffs
Locks Can Be Expensive

� That is, if N people are contending for a lock, N − 1 of
them are yield()ing, just wasting time.

� Here they could all work at once . . .

� Only restarting on collision . . .

� And even then, at least one thread which collided has
made progress.

41 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Tradeoffs
Locks Can Be Expensive

� For a large data structure (e.g. linked list), we would like
multiple local (independent) operations to be allowed
concurrently.

insertafter(label , node)

� Can somewhat get this with a data structure full of locks

� . . . but order requirements mean that threads can still pile
up while trying to get to their local site.

42 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Tradeoffs
Locks Can Be Expensive

� That is, instead of

LOCK HEAD

��
A // B // . . .

� We could have

HEAD

��

LOCK

A // B // . . .

LOCK LOCK
43 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Tradeoffs
Write Your Own?

� It’s extremely hard to roll your own lockfree algorithm.

� But moreover, it’s almost impossible to debug one.

� Thus all the papers are long not because the algorithms
are hard, . . .

� . . . but because they prove the correctness of the
algorithm so they can skip that step!

44 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Tradeoffs
Large Systems

� We increase the number of atomic operations.

� Thus we starve processors for bus activity on Intel-like
bus-locking systems.

� On systems with cache coherency protocols, we might
livelock with no processor able to make progress due to
cacheline stealing and high transit times.

45 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Some real algorithms?

� [3] specifies a CAS-based lock-free list-based sets and hash
tables using a technique called SMR to solve ABA and
allow reuse of memory.

� Their performance figures are worth looking at.
Summary: fine-grained locks (lock per node) show
linear-time increase with # threads, their algorithm
shows essentially constant time.

46 / 48



Introduction LFL Insert LFL Delete Tradeoffs Alg

Some real algorithms?

� Read-Copy-Update (RCU, [9]) uses techniques from
lock-free programming.

� Is used in several OSes, including Linux.

� It’s a bit more complicated than the examples given here,
but worth reading about.

47 / 48



References Acknowledgements

[1] Mikhail Fomitchev and Eric Ruppert, Lock-free linked lists and skip
lists, PODC (2004July), no. 1-58113-802-4/04/0007, 50–60.

[2] Peter Memishian, On locking, Sun Microsystems, 2006.

[3] Maged M. Michael, High performance dynamic lock-free hash tables
and list-based sets, SPAA (2002August),
no. 1-58113-529-7/02/0008, 73–83.

[4] , Safe memory reclamation for dynamic lock-free objects using
atomic reads and writes, PODC (2002July),
no. 1-58113-485-1/02/0007, 1–10.

[5] , Hazard pointers: Safe memory reclamation for lock-free
objects, IEEECS (2004Jan), no. TPDS-0058-0403, 1–10.

[6] H. Sundell, Wait-free reference counting and memory management,
2005April.

[7] Wikipedia, Lock-free and wait-free algorithms, 2006.

[8] , Non-blocking synchronization, 2006.
48 / 48



References Acknowledgements

[9] , Read-copy-update, 2006.

48 / 48



References Acknowledgements

Acknowledgements

� Dave Eckhardt (de0u) and Bruce Maggs (bmm) for moral
support and big-picture guidance

� Jess Mink (jmink), Matt Brewer (mbrewer), and Mr.
Wright (mrwright) for being victims of beta versions of
this lecture.

48 / 48


	Introduction
	Lock-Free Linked List Insertion
	Lock-Free Linked List Node
	Insertion into a Linked List Without Locks
	Review of Atomic Primitives
	Insertion into a Lock-free Linked List: Simple case
	Insertion into a Lock-free Linked List: Race case

	Lock-Free Linked List Deletion
	That's great!
	Deletion is easy?
	ABA Problem
	Fixing ABA

	Tradeoffs
	Locks Can Be Expensive
	Write Your Own?
	Large Systems

	Some real algorithms?
	Read-Copy-Update Mutual Exclusion

	Appendix
	References
	Acknowledgements


