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e Suppose some madman says “We shouldn’t use locks!”
e You know that this results (eventually!) in inconsistent
data structures.
e Loss of invariants within the data structure
e Live pointers to dead memory
e Live pointers to undead memory (Hey, my type changed!
Stop poking there!)

o Well, the madman insists, so here goes...

LFL DELETE TRADEOFFS ALc
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Lock-Free Linked List Insertion

Lock-Free Linked List Node

Insertion into a Linked List Without Locks
Review of Atomic Primitives

Insertion into a Lock-free Linked List: Simple case
Insertion into a Lock-free Linked List: Race case
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Lock-Free Linked List Node

¢ Node definition is simple:
void* data
void* next
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Insertion into a Linked List Without Locks

Insertion Code

insertAfter(label, data) {
new = newNode(data);
prev = findLabel(label);
new->next = prev->next;
prev->next = new,
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Insertion into a Linked List Without Locks

Precondition

Ao

e One list, two items on it; A and E.
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Insertion into a Linked List Without Locks

First step

C NULL
E NULL

Ii

D NULL

Two threads get two nodes, C and D and want to insert.
Thread 1: new = newNode(C);

Thread 2: new = newNode(D) ;

e prev = findLabel(A); /* Gives &A to both */
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Insertion into a Linked List Without Locks

Second step

e Two threads point their respective nodes C and D into
list at £

® new->next = prev->next;
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Insertion into a Linked List Without Locks

One thread goes

¢ One of the two goes (here the thread owning C). ..

® prev->next = new,
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Insertion into a Linked List Without Locks

And the other. ..

e And the other (owning D)...
® prev->next = new,

e This loses a node! (Nobody notices that C is no longer
on the list)
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Review of Atomic Primitives

e XCHG (ptr, val) atomically:
e old_val = *ptr
e xptr = val
e return old_val
e CAS (ptr, expect, new) atomically:
e if ( *ptr != expect ) return *ptr;
e else return XCHG (ptr, new);
e Note that CAS is no harder - it's a read and a write; the
logic is free (it's on the chip).
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Review of Atomic Primitives

» Notice that we can use CAS to rescue this procedure.

e So let's rewrite that insertion code to be
insertAfter(label, data) {
new = newNode(data);
do {
prev = findLabel(label);
new->next = prev->next,;
} while
( CAS(&prev->next, new->next, new)
= new->next) ;
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Insertion into a Lock-free Linked List: Simple

case
Setup

A &

e Some thread constructs the bottom node C; wishes to
place it between the two above, A and E.

e new = newNode(C);
e prev = findLabel(A);
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Insertion into a Lock-free Linked List: Simple

case
First step

C &E

e Thread points C node's next into list at E.

® new->next = prev->next;
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Insertion into a Lock-free Linked List: Simple

case
First step

e CAS( , new->next, new);
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Insertion into a Lock-free Linked List: Race

case
First step

C NULL

A &E

e Two threads get their respective nodes C and D.
e new = newNode(...);
e prev = findLabel(A);
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Insertion into a Lock-free Linked List: Race

case
First step

e Both set their new node’s next pointer.

* new—>next = prev->next;
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Insertion into a Lock-free Linked List: Race

case
One thread goes

e One of the two goes (here the thread owning C won). ..

e CAS( , new->next, new)
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Insertion into a Lock-free Linked List: Race

case
And the other. ..

And the other (owning D)...

CAS(&prev->next, new->next, new)

Fails since prev->next == &C and new->next == &E.

So this thread tries again. 20
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That’s great!

e This works fine for data structures supporting only insert
and scan.

e How many data structures are like that?
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Deletion s easy?

e Suppose we have

e And want to get rid of C.
e So CAS(&A.next, &C, &E)



INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] o 0000
000000 { Jo} [e]

(e]e} 000000000 [e]
000 000000

0000

Deletion is easy?

¢ Now we have

e Great, looks like deletion to mel

23 /48
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Deletion is easy?
Continued

e But imagine there was another thread accessing C (say,
scanning the list).

o We have no way of knowing this, so for correctness we
must not free(C).
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ABA Problem

e A problem of confused identity

global = malloc(sizeof(Foo))

local; = global local, = global

global = NULL

free(localy)

global = malloc(sizeof(Foo))

/* Validity check */
if ( global == local, )
global->foo_baz = ...

e Even though local, and global might share the same
value, they don't really mean the same thing.
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ABA Problem

So, for a “deleted” node (often “logically deleted
node”). ..

Let's just leave it detached from the list, marking it
somehow as deleted.

C INVALID |

A &l i

Other threads will fail their operations and restart.
We might have a free list of available nodes, even. ..

e Some published implementations do this, leaving as an
exercise to syncrhonize all threads to delete the the list
and free list when everybody's done.

e See [1] (linked & skip lists).
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ABA Problem

Now reusing memory. ..

o We might have a somewhat complex case of a sorted list

A &D E NULL |

D &E
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ABA Problem

Now reusing memory. ..

e Thread X trying to insert C after A starts up its dance...

e So we now have

LFL DELETE
[e]

(e]e}
000@00000
000000

TRADEOFFS

0000
[e]
[e]
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ABA Problem

Now reusing memory. ..

e Somebody comes in and deletes D.
e So we now have

A QE——E _ NULL |
¢ &l D  INVALDD|

e There is a deleted node (D, bottom right) that was the
next of A when thread X started running
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ABA Problem

Now reusing memory (part 2)

e Another thread, Y, now reclaims deleted node, labels it B
and points it to E.

e So now we have

e Thread X still trying to insert C after A. Been preempted
for “a while”

30 18
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ABA Problem

Now reusing memory (part 3)

e Thread Y now inserts the reclaimed node where it
belongs! (using CAS, of course)

e Trying for a sorted list with

e Thread X still trying to insert “C" after “A”. Been
preempted for “a while”
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ABA Problem

Now reusing memory (part 4)

e Thread X wakes up, and the CAS works (!) giving instead




INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]

(e]e} 00000000e [e]
000 000000

0000

ABA Problem

Woah, what just happened?

e But {A,C,B,E} isn't sorted!
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Fizing ABA

e |t turns out that we need a more sophisticated delete

(and maybe insert and lookup!) function. Look at [1] or
[3] (or others) for more details.

» Generation counters are a simple way to solve ABA
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Fizing ABA

¢ Imagine that instead of CAS we had CAS2, which operates
on two words at once:
CAS (ptr, expect;, expect,, new;, new,)
atomically:
e if (*ptr != expect; || *(ptr+l) != expectr)
e return {*ptr, *(ptr+l)};
e else
e xptr = new;; *(ptr+l) = newy;
e return { expect;, expecty };
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Fizing ABA

o If we keep a generation counter at each site and CAS2 the
pointer and the generation counter, some “reasonably
large” number of pointer updates are all to unique values.
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Fizing ABA

e From the above example, the initial list might have
looked like

E_  NULL,O|

D &E,o\




INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]

(e]e} 000000000 [e]
000 000080

0000

Fizing ABA

o Deletion of D might make it look like

A &E, 1 E_ NULL, O \

C &0 D INVALID]




INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]

(e]e} 000000000 [e]
000 O00000e

0000

Fizing ABA

e Insertion of B might make it look like

NULL, 0|

VV&E,O‘

e 2 I= 0 so we're saved!
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Tradeoffs

Locks Can Be Ezpensive

Consider XCHG style locks which use
while( xchg( &locked, LOCKED ) == LOCKED )
as their core operation.

Each xchg flushes the processor pipeline. . .

We could spend a long time here waiting or yielding. . .

This implies we'll have very high latency on contention. . .

10 / 48
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Tradeoffs

Locks Can Be Ezpensive

That is, if N people are contending for a lock, N — 1 of
them are yield()ing, just wasting time.

Here they could all work at once ...
Only restarting on collision . ..

And even then, at least one thread which collided has
made progress.
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Tradeoffs

Locks Can Be Ezpensive

e For a large data structure (e.g. linked list), we would like
multiple /ocal (independent) operations to be allowed
concurrently.

insertafter(/abel, node)

e Can somewhat get this with a data structure full of locks

e ... but order requirements mean that threads can still pile
up while trying to get to their local site.
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Tradeoffs

Locks Can Be Ezpensive

e That is, instead of

|LOCK

HEAD |

e We could have

TRADEOFFS
oooe
o]

[e]

|HEAD LOCK |
A— B
LOCK LOCK




INTRODUCTION

LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} o
(e]e} 000000000 [e]
000 000000

0000

Tradeoffs

Write Your Own?

It's extremely hard to roll your own lockfree algorithm.
But moreover, it's almost impossible to debug one.

Thus all the papers are long not because the algorithms
are hard, ...

... but because they prove the correctness of the
algorithm so they can skip that step!

14 /48
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Tradeoffs

Large Systems

e We increase the number of atomic operations.

e Thus we starve processors for bus activity on Intel-like
bus-locking systems.

e On systems with cache coherency protocols, we might
livelock with no processor able to make progress due to
cacheline stealing and high transit times.
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Some real algorithms?

e [3] specifies a CAS-based lock-free list-based sets and hash
tables using a technique called SMR to solve ABA and
allow reuse of memory.

e Their performance figures are worth looking at.
Summary: fine-grained locks (lock per node) show
linear-time increase with # threads, their algorithm
shows essentially constant time.
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Some real algorithms?

Read-Copy-Update (RCU, [9]) uses techniques from
lock-free programming.

Is used in several OSes, including Linux.

It's a bit more complicated than the examples given here,
but worth reading about.
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