INTRODUCTION

LFL INSERT LFL DELETE TRADEOFFS
o o 0000
000000 00 o

00 000000000 o

000 000000

0000

Lock-free Programming

Nathaniel Wesley Filardo

November 20, 2006

INTRODUCTION LFL INSERT LFL DELETE

(e} o]
000000 00
[e]e) 000000000
000 000000
0000

Outline

Introduction
Lock-Free Linked List Insertion
Lock-Free Linked List Deletion

Tradeoffs

Some real algorithms?

TRADEOFFS
0000
o

[e]

INTRODUCTION LFL INSERT

[e] () 0000
000000 (e]e} [e]
(e]e} 000000000 [e]
000 000000

0000

e Suppose some madman says “We shouldn’t use locks!”
e You know that this results (eventually!) in inconsistent
data structures.
e Loss of invariants within the data structure
e Live pointers to dead memory
e Live pointers to undead memory (Hey, my type changed!
Stop poking there!)

o Well, the madman insists, so here goes...

LFL DELETE TRADEOFFS ALc

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]
(e]e} 000000000 [e]
000 000000

0000

Lock-Free Linked List Insertion

Lock-Free Linked List Node

Insertion into a Linked List Without Locks
Review of Atomic Primitives

Insertion into a Lock-free Linked List: Simple case
Insertion into a Lock-free Linked List: Race case

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[] () 0000
000000 (e]e} [e]

(e]e} 000000000 [e]
000 000000

0000

Lock-Free Linked List Node

¢ Node definition is simple:
void* data
void* next

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
®00000 (e]e} [e]
(e]e} 000000000 [e]
000 000000

0000

Insertion into a Linked List Without Locks

Insertion Code

insertAfter(label, data) {
new = newNode(data);
prev = findLabel(label);
new->next = prev->next;
prev->next = new,

INTRODUCTION LFL INSERT LFL DELETE

TRADEOFFS ALc
o o 0000
0®0000 00 o
00 000000000 o
000 000000
0000

Insertion into a Linked List Without Locks

Precondition

Ao

e One list, two items on it; A and E.

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
0O0e000 (e]e} [e]

(e]e} 000000000 [e]
000 000000
0000

Insertion into a Linked List Without Locks

First step

C NULL
E NULL

Ii

D NULL

Two threads get two nodes, C and D and want to insert.
Thread 1: new = newNode(C);

Thread 2: new = newNode(D) ;

e prev = findLabel(A); /* Gives &A to both */

INTRODUCTION LFL INSERT LFL DELETE

TRADEOFFS ALc
o o 0000
000800 00 o
00 000000000 o
000 000000
0000

Insertion into a Linked List Without Locks

Second step

e Two threads point their respective nodes C and D into
list at £

® new->next = prev->next;

INTRODUCTION LFL INSERT LFL DELETE

TRADEOFFS ALc
o o 0000
0000@0 00 o
00 000000000 o
000 000000
0000

Insertion into a Linked List Without Locks

One thread goes

¢ One of the two goes (here the thread owning C). ..

® prev->next = new,

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
O0000e (e]e} [e]

(e]e} 000000000 [e]
000 000000

0000

Insertion into a Linked List Without Locks

And the other. ..

e And the other (owning D)...
® prev->next = new,

e This loses a node! (Nobody notices that C is no longer
on the list)

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]

[]o} 000000000 [e]
000 000000

0000

Review of Atomic Primitives

e XCHG (ptr, val) atomically:
e old_val = *ptr
e xptr = val
e return old_val
e CAS (ptr, expect, new) atomically:
e if (*ptr != expect) return *ptr;
e else return XCHG (ptr, new);
e Note that CAS is no harder - it's a read and a write; the
logic is free (it's on the chip).

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]

oe 000000000 [e]
000 000000

0000

Review of Atomic Primitives

» Notice that we can use CAS to rescue this procedure.

e So let's rewrite that insertion code to be
insertAfter(label, data) {
new = newNode(data);
do {
prev = findLabel(label);
new->next = prev->next,;
} while
(CAS(&prev->next, new->next, new)
= new->next) ;

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]

00 000000000 [e]
@00 000000

0000

Insertion into a Lock-free Linked List: Simple

case
Setup

A &

e Some thread constructs the bottom node C; wishes to
place it between the two above, A and E.

e new = newNode(C);
e prev = findLabel(A);

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]

(e]e) 000000000 [e]
oeo 000000

0000

Insertion into a Lock-free Linked List: Simple

case
First step

C &E

e Thread points C node's next into list at E.

® new->next = prev->next;

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]

(e]e) 000000000 [e]
ooce 000000

0000

Insertion into a Lock-free Linked List: Simple

case
First step

e CAS(, new->next, new);

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]
(e]e} 000000000 [e]
000 000000

@000

Insertion into a Lock-free Linked List: Race

case
First step

C NULL

A &E

e Two threads get their respective nodes C and D.
e new = newNode(...);
e prev = findLabel(A);

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]

(e]e} 000000000 [e]
000 000000

o] le]e)

Insertion into a Lock-free Linked List: Race

case
First step

e Both set their new node’s next pointer.

* new—>next = prev->next;

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]

(e]e} 000000000 [e]
[e]o]e} 000000

[e]o]]o)

Insertion into a Lock-free Linked List: Race

case
One thread goes

e One of the two goes (here the thread owning C won). ..

e CAS(, new->next, new)

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]
(e]e} 000000000 [e]
000 000000

oooe

Insertion into a Lock-free Linked List: Race

case
And the other. ..

And the other (owning D)...

CAS(&prev->next, new->next, new)

Fails since prev->next == &C and new->next == &E.

So this thread tries again. 20

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] (] 0000
000000 (e]e} [e]

(e]e} 000000000 [e]
000 000000

0000

That’s great!

e This works fine for data structures supporting only insert
and scan.

e How many data structures are like that?

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] o 0000
000000 (e]e} [e]

(e]e} 000000000 [e]
000 000000

0000

Deletion s easy?

e Suppose we have

e And want to get rid of C.
e So CAS(&A.next, &C, &E)

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] o 0000
000000 { Jo} [e]

(e]e} 000000000 [e]
000 000000

0000

Deletion is easy?

¢ Now we have

e Great, looks like deletion to mel

23 /48

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] o 0000
000000 oe [e]

(e]e} 000000000 [e]
000 000000

Deletion is easy?
Continued

e But imagine there was another thread accessing C (say,
scanning the list).

o We have no way of knowing this, so for correctness we
must not free(C).

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]
(e]e} 000000000 [e]
000 000000

0000

ABA Problem

e A problem of confused identity

global = malloc(sizeof(Foo))

local; = global local, = global

global = NULL

free(localy)

global = malloc(sizeof(Foo))

/* Validity check */
if (global == local,)
global->foo_baz = ...

e Even though local, and global might share the same
value, they don't really mean the same thing.

INTRODUCTION

LFL INSERT LFL DELETE 'RADEOFFS

[e] () 0000
000000 (e]e} [e]
(e]e} 0@0000000 [e]
000 000000

0000

ABA Problem

So, for a “deleted” node (often “logically deleted
node”). ..

Let's just leave it detached from the list, marking it
somehow as deleted.

C INVALID |

A &l i

Other threads will fail their operations and restart.
We might have a free list of available nodes, even. ..

e Some published implementations do this, leaving as an
exercise to syncrhonize all threads to delete the the list
and free list when everybody's done.

e See [1] (linked & skip lists).

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]

(e]e} 00@000000 [e]
000 000000

0000

ABA Problem

Now reusing memory. ..

o We might have a somewhat complex case of a sorted list

A &D E NULL |

D &E

INTRODUCTION LFL INSERT

[e]
000000
(e]e}

000
0000

ABA Problem

Now reusing memory. ..

e Thread X trying to insert C after A starts up its dance...

e So we now have

LFL DELETE
[e]

(e]e}
000@00000
000000

TRADEOFFS

0000
[e]
[e]

28 /48

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]
(e]e} 0000e0000 [e]
000 000000

0000

ABA Problem

Now reusing memory. ..

e Somebody comes in and deletes D.
e So we now have

A QE——E _ NULL |
¢ &l D INVALDD|

e There is a deleted node (D, bottom right) that was the
next of A when thread X started running

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]
(e]e} 00000@000 [e]
000 000000

0000

ABA Problem

Now reusing memory (part 2)

e Another thread, Y, now reclaims deleted node, labels it B
and points it to E.

e So now we have

e Thread X still trying to insert C after A. Been preempted
for “a while”

30 18

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]
(e]e} 000000e00 [e]
000 000000

0000

ABA Problem

Now reusing memory (part 3)

e Thread Y now inserts the reclaimed node where it
belongs! (using CAS, of course)

e Trying for a sorted list with

e Thread X still trying to insert “C" after “A”. Been
preempted for “a while”

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]

(e]e} 000000080 [e]
000 000000

0000

ABA Problem

Now reusing memory (part 4)

e Thread X wakes up, and the CAS works (!) giving instead

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]

(e]e} 00000000e [e]
000 000000

0000

ABA Problem

Woah, what just happened?

e But {A,C,B,E} isn't sorted!

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]
(e]e} 000000000 [e]
000 000000

0000

Fizing ABA

e |t turns out that we need a more sophisticated delete

(and maybe insert and lookup!) function. Look at [1] or
[3] (or others) for more details.

» Generation counters are a simple way to solve ABA

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]
(e]e} 000000000 [e]
000 0®@0000

0000

Fizing ABA

¢ Imagine that instead of CAS we had CAS2, which operates
on two words at once:
CAS (ptr, expect;, expect,, new;, new,)
atomically:
e if (*ptr != expect; || *(ptr+l) != expectr)
e return {*ptr, *(ptr+l)};
e else
e xptr = new;; *(ptr+l) = newy;
e return { expect;, expecty };

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]
(e]e} 000000000 [e]
000 00e000

0000

Fizing ABA

o If we keep a generation counter at each site and CAS2 the
pointer and the generation counter, some “reasonably
large” number of pointer updates are all to unique values.

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]

(e]e} 000000000 [e]
000 000e00

0000

Fizing ABA

e From the above example, the initial list might have
looked like

E_ NULL,O|

D &E,o\

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]

(e]e} 000000000 [e]
000 000080

0000

Fizing ABA

o Deletion of D might make it look like

A &E, 1 E_ NULL, O \

C &0 D INVALID]

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]

(e]e} 000000000 [e]
000 O00000e

0000

Fizing ABA

e Insertion of B might make it look like

NULL, 0|

VV&E,O‘

e 2 I= 0 so we're saved!

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]
(e]e} 000000000 [e]
000 000000

0000

Tradeoffs

Locks Can Be Ezpensive

Consider XCHG style locks which use
while(xchg(&locked, LOCKED) == LOCKED)
as their core operation.

Each xchg flushes the processor pipeline. . .

We could spend a long time here waiting or yielding. . .

This implies we'll have very high latency on contention. . .

10 / 48

INTRODUCTION

LFL INSERT LFL DELETE TRADEOFFS

[e] () [e] le]e]
000000 (e]e} [e]
(e]e} 000000000 [e]
000 000000

0000

Tradeoffs

Locks Can Be Ezpensive

That is, if N people are contending for a lock, N — 1 of
them are yield()ing, just wasting time.

Here they could all work at once ...
Only restarting on collision . ..

And even then, at least one thread which collided has
made progress.

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () [e]e] o]
000000 (e]e} [e]
(e]e} 000000000 [e]
000 000000

0000

Tradeoffs

Locks Can Be Ezpensive

e For a large data structure (e.g. linked list), we would like
multiple /ocal (independent) operations to be allowed
concurrently.

insertafter(/abel, node)

e Can somewhat get this with a data structure full of locks

e ... but order requirements mean that threads can still pile
up while trying to get to their local site.

INTRODUCTION LFL INSERT
o
000000
00

000
0000

LFL DELETE
o

(e]e}
000000000
000000

Tradeoffs

Locks Can Be Ezpensive

e That is, instead of

|LOCK

HEAD |

e We could have

TRADEOFFS
oooe
o]

[e]

|HEAD LOCK |
A— B
LOCK LOCK

INTRODUCTION

LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} o
(e]e} 000000000 [e]
000 000000

0000

Tradeoffs

Write Your Own?

It's extremely hard to roll your own lockfree algorithm.
But moreover, it's almost impossible to debug one.

Thus all the papers are long not because the algorithms
are hard, ...

... but because they prove the correctness of the
algorithm so they can skip that step!

14 /48

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]
(e]e} 000000000 o
000 000000

0000

Tradeoffs

Large Systems

e We increase the number of atomic operations.

e Thus we starve processors for bus activity on Intel-like
bus-locking systems.

e On systems with cache coherency protocols, we might
livelock with no processor able to make progress due to
cacheline stealing and high transit times.

INTRODUCTION LFL INSERT LFL DELETE TRADEOFFS ALc

[e] () 0000
000000 (e]e} [e]
(e]e} 000000000 [e]
000 000000

0000

Some real algorithms?

e [3] specifies a CAS-based lock-free list-based sets and hash
tables using a technique called SMR to solve ABA and
allow reuse of memory.

e Their performance figures are worth looking at.
Summary: fine-grained locks (lock per node) show
linear-time increase with # threads, their algorithm
shows essentially constant time.

INTRODUCTION

LFL INSERT LFL DELETE TRADEOFFS

[e] () 0000
000000 (e]e} [e]
(e]e} 000000000 [e]
000 000000

0000

Some real algorithms?

Read-Copy-Update (RCU, [9]) uses techniques from
lock-free programming.

Is used in several OSes, including Linux.

It's a bit more complicated than the examples given here,
but worth reading about.

REFERENCES

(1]

2]

(3]

[4]

(5]

[6]

[7]
(8]

ACKNOWLEDGEMENTS

Mikhail Fomitchev and Eric Ruppert, Lock-free linked lists and skip
lists, PODC (2004July), no. 1-58113-802-4/04/0007, 50-60.

Peter Memishian, On locking, Sun Microsystems, 2006.

Maged M. Michael, High performance dynamic lock-free hash tables
and list-based sets, SPAA (2002August),
no. 1-58113-529-7,/02/0008, 73-83.

, Sate memory reclamation for dynamic lock-free objects using
atomic reads and writes, PODC (2002July),
no. 1-58113-485-1/02/0007, 1-10.

, Hazard pointers: Safe memory reclamation for lock-free
objects, IEEECS (2004Jan), no. TPDS-0058-0403, 1-10.

H. Sundell, Wait-free reference counting and memory management,
2005April.

Wikipedia, Lock-free and wait-free algorithms, 2006.
_, Non-blocking synchronization, 2006.

8/ 48

[9]

, Read-copy-update, 2006.

48 /48

REFERENCES ACKNOWLEDGEMENTS

Acknowledgements

e Dave Eckhardt (deOu) and Bruce Maggs (bmm) for moral
support and big-picture guidance

e Jess Mink (jmink), Matt Brewer (mbrewer), and Mr.
Wright (mrwright) for being victims of beta versions of
this lecture.

	Introduction
	Lock-Free Linked List Insertion
	Lock-Free Linked List Node
	Insertion into a Linked List Without Locks
	Review of Atomic Primitives
	Insertion into a Lock-free Linked List: Simple case
	Insertion into a Lock-free Linked List: Race case

	Lock-Free Linked List Deletion
	That's great!
	Deletion is easy?
	ABA Problem
	Fixing ABA

	Tradeoffs
	Locks Can Be Expensive
	Write Your Own?
	Large Systems

	Some real algorithms?
	Read-Copy-Update Mutual Exclusion

	Appendix
	References
	Acknowledgements

