
15-410, F’06- 1 -

IPC & RPC
Nov. 10, 2006

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L28_IPCRPC

15-410
“...Mooooo!...”

15-410, F’06- 3 -

Synchronization

Project 3 tactical considerationsProject 3 tactical considerations
� Getting the shell running is important

� We won't build a hand-load kernel for each test!
� Test harness relies on shell to launch programs

� Getting a body of code solid is important
� Better for exec() to work 1000 times than thr_fork once

� Run tests as soon as you can
� Carefully consider the P3extra overtime

� In general, getting a really solid kernel is the be st thing
» For your grade
» For your education!

15-410, F’06- 4 -

Outline

IPC – InterProcess CommunicationIPC – InterProcess Communication

RPC – Remote Procedure CallRPC – Remote Procedure Call

TextbookTextbook
� Sections 3.4-3.6

15-410, F’06- 5 -

Scope of “IPC”

Communicating processes on one machineCommunicating processes on one machine

What about multiple machines?What about multiple machines?
� Virtualize single-machine IPC
� Switch to a “network” model

� Failures happen
� Administrative domain switch
� ...
� (“RPC”)

15-410, F’06- 6 -

IPC parts

NamingNaming

Synchronization/bufferingSynchronization/buffering

Message body issuesMessage body issues
� Copy vs. reference
� Size

15-410, F’06- 7 -

Naming

Message sent to Message sent to processprocess or to or to mailboxmailbox ??

Process modelProcess model
� send(P, msg)
� receive(Q, &msg) or receive(&id, &msg)

No need to set up “communication link”No need to set up “communication link”
� But you need to know process id's
� You get only one “link” per process pair

15-410, F’06- 8 -

Naming

Mailbox modelMailbox model
� send(box1, msg)
� receive(box1, &msg) or receive(&box, &msg)

Where do mailbox id's come from?Where do mailbox id's come from?
� “name server” approach

box = createmailbox();

register(box1, “Terry's process”);

boxT = lookup(“Terry's process”);

File system approach – File system approach – greatgreat (if you have one) (if you have one)
box = createmailbox(“/tmp/Terry”);

15-410, F’06- 9 -

Multiple Senders

ProblemProblem
� Receiver needs to know who sent request

First-cut solutionFirst-cut solution
� Sender includes identifier in message body
� Problem?

15-410, F’06- 10 -

Multiple Senders

ProblemProblem
� Receiver needs to know who sent request

Typical solutionTypical solution
� “Message” not just a byte array
� OS imposes structure

� sender id (maybe process id and mailbox id)
� maybe: type, priority, ...

15-410, F’06- 11 -

Multiple Receivers

ProblemProblem
� Service may be “multi-threaded”
� Multiple receives waiting for one mailbox

Typical solutionTypical solution
� OS “arbitrarily” chooses receiver per message

� (Can you guess how?)

15-410, F’06- 12 -

Synchronization

IssueIssue
� Does communication imply synchronization?

Blocking send()?Blocking send()?
� Ok for request/response pattern
� Provides assurance of message delivery
� Bad for producer/consumer pattern

Non-blocking send()?Non-blocking send()?
� Raises buffering issue (below)

15-410, F’06- 13 -

Synchronization

Blocking receive()?Blocking receive()?
� Ok/good for “server thread”

� Remember, de-scheduling is a kernel service
� Ok/good for request/response pattern
� Awkward for some servers

� Abort connection when client is “too idle”

Pure-non-blocking receive?Pure-non-blocking receive?
� Ok for polling
� Polling is costly

15-410, F’06- 14 -

Synchronization

Receive-with-timeoutReceive-with-timeout
� Wait for message
� Abort if timeout expires
� Can be good for real-time systems
� What timeout value is appropriate?

15-410, F’06- 15 -

Synchronization

Meta-receiveMeta-receive
� Specify a group of mailboxes
� Wake up on first message

Receive-scanReceive-scan
� Specify list of mailboxes, timeout
� OS indicates which mailbox(es) are “ready” for what
� Unix: select(), poll()

15-410, F’06- 16 -

Buffering

IssueIssue
� How much space does OS provide “for free”?
� “Kernel memory” limited!

OptionsOptions
� No buffering

� implies blocking send
� Fixed size, undefined size

� Send blocks unpredictably

15-410, F’06- 17 -

A Buffering Problem

P1P1
send(P2, p1-my-status)

receive(P2, &p1-peer-status)

P2P2
send(P1, p2-my-status)

receive(P1, &p2-peer-status)

What's the problem?What's the problem?
� Can you draw a picture of it?

15-410, F’06- 18 -

Message Size Issue

Ok to copy Ok to copy smallsmall messages sender messages sender �� receiver receiver

Bad to copy Bad to copy 1-megabyte1-megabyte messages messages
� (Why?)

Bad suggestion: “Chop up large messages”Bad suggestion: “Chop up large messages”
� Evades the issue

15-410, F’06- 19 -

“Out-of-line” Data

Message can Message can refer torefer to memory regions memory regions
� (page-aligned, multiple-page)
� Either “copy” or transfer ownership to receiver
� Can share the physical memory

� Mooooo!

15-410, F’06- 20 -

“Rendezvous”

ConceptConcept
� Blocking send
� Blocking receive

Great for OSGreat for OS
� No buffering required!

Theoretically interestingTheoretically interesting

Popular in a variety of languagesPopular in a variety of languages
� (most of them called “Ada”)

15-410, F’06- 21 -

Example: Mach IPC

Why study Mach?Why study Mach?
� “Pure” “clean” capability/message-passing system
� Low abstraction count
� This is CMU...

Why not?Why not?
� Failed to reach market
� Performance problems with multi-server approach?

Verdict: hmm... (GNU Hurd? Godot??)Verdict: hmm... (GNU Hurd? Godot??)

15-410, F’06- 22 -

Mach IPC – ports

Port: Mach “mailbox” objectPort: Mach “mailbox” object
� One receiver

� (one “backup” receiver)
� Potentially many senders

Ports identify system objectsPorts identify system objects
� Each task identified/controlled by a port
� Each thread identified/controlled by a port
� Kernel exceptions delivered to “exception port”

� “External Pager Interface” - page faults in user sp ace!

15-410, F’06- 23 -

Mach IPC – Port Rights

Receive rightsReceive rights
� “Receive end” of a port
� Held by one task
� Capability typically unpublished

� receive rights imply ownership

Send rightsSend rights
� “Send end” - ability to transmit message to mailbox
� Frequently published via “name server” task
� Confer no rights (beyond “denial of service”)

15-410, F’06- 24 -

Mach IPC – Message Contents

Memory regionsMemory regions
� In-line for “small” messages (copied)
� Out-of-line for “large” messages

� Sender may de-allocate on send
� Otherwise, copy-on-write

““ Port rights”Port rights”
� Sender specifies task-local port #
� OS translates to internal port-id while queued
� Receiver observes task-local port #

15-410, F’06- 25 -

Mach IPC – Operations

sendsend
� block, block(n milliseconds), don't-block
� “send just one”

� when destination full, queue 1 message in sender thread
� sender notified when transfer completes

receivereceive
� receive from port
� receive from port set
� block, block(n milliseconds), don't-block

15-410, F’06- 26 -

Mach IPC – “RPC”

Common pattern: “Remote” Procedure CallCommon pattern: “Remote” Procedure Call
� Really: “cross-task” procedure call

Client synchronization/message flowClient synchronization/message flow
� Blocking send, blocking receive

Client must allow server to respondClient must allow server to respond
� Transfer “send rights” in message

� “Send-once rights” speed hack

Server message flow (N threads)Server message flow (N threads)
� Blocking receive, non-blocking send

15-410, F’06- 27 -

Mach IPC – Naming

Port send rights are OS-managed capabilitiesPort send rights are OS-managed capabilities
� unguessable, unforgeable

How to contact a server?How to contact a server?
� Ask the name server task

� Trusted – source of all capabilities

How to contact the name server?How to contact the name server?
� Task creator specifies name server for new task

� Can create custom environment for task tree
» By convention, send rights to name server are locat ed

at a particular client port number (like
stdin/stdout/stderr)

� System boot task launches nameserver, gives out rig hts

15-410, F’06- 28 -

IPC Summary

NamingNaming
� Name server?
� File system?

Queueing/blockingQueueing/blocking

Copy/share/transferCopy/share/transfer

A Unix surpriseA Unix surprise
� sendmsg()/recvmsg() pass file descriptors!

15-410, F’06- 29 -

RPC Overview

RPC = Remote RPC = Remote Procedure CallProcedure Call

Concept: extend IPC across machinesConcept: extend IPC across machines
� Maybe across “administrative domains”

MarshallingMarshalling

Server locationServer location

Call semanticsCall semantics

Request flowRequest flow

15-410, F’06- 30 -

RPC Model

ApproachApproach
d = computeNthDigit(CONST_PI, 3000);
� Abstract away from “who computes it”
� Should “work the same” when remote Cray does the jo b

IssuesIssues
� Must specify server somehow
� What “digit value” is “server down”?

� Exceptions useful in “modern” languages

15-410, F’06- 31 -

Marshalling

Values must cross the networkValues must cross the network

Machine formats differMachine formats differ
� Integer byte order

� www.scieng.com/ByteOrder.PDF
� Floating point format

� IEEE 754 or not
� Memory packing/alignment issues

15-410, F’06- 32 -

Marshalling

Define a “network format”Define a “network format”
� ASN.1 - “self-describing” via in-line tags
� XDR – not

““ Serialize” language-level object to byte streamSerialize” language-level object to byte stream
� Rules typically recursive

� Serialize a struct by serializing its fields in ord er
� Implementation probably should not be recursive

� (Why not?)

15-410, F’06- 33 -

Marshalling

IssuesIssues
� Some types don't translate well

� Ada has ranged integers, e.g., 44..59
� Not everybody really likes 64-bit ints
� Floating point formats are religious issues

� Performance!
� Memory speed � network speed

� The dreaded “pointer problem”

15-410, F’06- 34 -

Marshalling

struct node {

 int value;

 struct node *neighbors[4];

} nodes[1024];

nnodes = sizeof(nodes)/sizeof(nodes[0]);

n = occupancy(nodes, nnodes);

bn = best_neighbor(node);

i = value(node);

Implications?Implications?

15-410, F’06- 35 -

Marshalling

n = occupancy(nodes, nnodes);
� Marshall array – ok

bn = best_neighbor(node);
� Marshall graph structure – not so ok

i = value(node);
� Avoiding marshalling graph – not obvious

� “Node fault”??

15-410, F’06- 36 -

Server Location

Which machine?Which machine?
� Multiple AFS cells on the planet
� Each has multiple file servers

ApproachesApproaches
� Special hostnames: www .cmu.edu
� Machine lists

� AFS CellSrvDB /usr/vice/etc/CellServDB
� DNS SRV records (RFC 2782)

15-410, F’06- 37 -

Server Location

Which port?Which port?
� Must distinguish services on one machine

� Single machine can be AFS volume, vldb, pt server
� Fixed port assignment

� AFS: fileserver UDP 7000, volume location 7003
� /etc/services or www.iana.org/assignments/port-num bers
� RFC 2468 www.rfc-editor.org/rfc/rfc2468.txt

� Dynamic port assignment
� Contact “courier” / “matchmaker” service via RPC
� ...on a fixed port assignment!

15-410, F’06- 38 -

Call Semantics

Typically, caller blocksTypically, caller blocks
� Matches procedure call semantics

Blocking can be expensiveBlocking can be expensive
� By a factor of a million(!!) over real procedure call

““ Asynchronous RPC”Asynchronous RPC”
� Transmit request, do other work, check for reply
� Not really “PC” any more
� More like programming language “futures”

15-410, F’06- 39 -

Fun Call Semantics

Batch RPCBatch RPC
� Send list of procedure calls
� Later calls can use results of earlier calls

IssuesIssues
� Abort batch if one call fails?

� Yet another programming language?
� Typically wrecks “procedure call” abstraction

� Your code must make N calls before 1 st answer

15-410, F’06- 40 -

Fun Call Semantics

Batch RPC ExamplesBatch RPC Examples
� NFS v4 (eventually), RFC 3010
� Bloch, A Practical Approach to Replication of Abstr act

Data Objects

15-410, F’06- 41 -

Sad Call semantics

Network failureNetwork failure
� Retransmit request

� How long?

Server rebootServer reboot
� Does client deal with RPC session restart?
� Did the call “happen” or not?

� Retransmitting “remove foo.c” all day long may not be safe!

15-410, F’06- 42 -

Client Flow

Client code calls Client code calls stubstub routine routine
� “Regular code” which encapsulates the magic

Stub routineStub routine
� Locates communication channel

� If not established: costly location/set-up/authenti cation
� Marshals information

� Procedure #, parameters
� Sends message, awaits reply
� Unmarshals reply, returns to user code

15-410, F’06- 43 -

Server Flow

Thread pool runs Thread pool runs skeletonskeleton code code

Skeleton code Skeleton code
� Waits for request from a client
� Locates client state

� Authentication/encryption context
� Unmarshals parameters
� Calls “real code”
� Marshals reply
� Sends reply

15-410, F’06- 44 -

RPC Deployment

Define interfaceDefine interface
� Get it right, you'll live with it for a while!
� AFS & NFS RPC layers ~15 years old

““ Stub generator”Stub generator”
� Special-purpose compiler
� Turns “interface spec” into stubs & skeleton

Link stub code with client & serverLink stub code with client & server

Run a server!Run a server!

15-410, F’06- 45 -

Java RMI

RRemote emote MMethod ethod IInvocationnvocation

Serialization: programmer/language cooperationSerialization: programmer/language cooperation
� Dangerously subtle!

� Bloch, Effective Java

RMI > RPCRMI > RPC
� Remote methods � remote procedures
� Parameters can be (differently) remote

� Client on A can call method of class implemented on B
passing object located on C

» (slowly)

15-410, F’06- 46 -

RPC Summary

RPC is lots of funRPC is lots of fun

So much fun that lots of things don't do itSo much fun that lots of things don't do it
� SMTP
� HTTP

RPC = IPCRPC = IPC
� + server location, marshalling, network failure, de lays
� - special copy tricks, speed

Remote Objects? Remote Objects? Effective JavaEffective Java , , Bitter JavaBitter Java

