15-410

“Nobody reads these guotes anyway...”

Executables
October 11, 2006

Dave Eckhar dt
Bruce Maggs

Some slides taken from 15-213 S'03 (Goldstein, Magg S).
Original slides authored by Randy Bryant and Dave O 'Hallaron.

15-410, F'06

Pop Quiz
Q1. What does the Unix “Ild” program do?

Q2. What does “ld" stand for?

_2. 15-410, F'06

Outline

Where addresses come from

Executable files vs. Memory Images
= Conversion by “program loader”
= You will write one for exec() in Project 3

Object file linking (answer to Q2)
= Loader bugs make programs execute half-right

= You will need to characterize what's broken
= (Not: “every time | call printf() | get a triple fault”)

= You will need to how the parts should fit together

15-410, F'06

Who emits addresses?

Program linking, program loading
= ... means getting bits in memory at the right addr esses

Who uses those addresses?
= (Where did that “wild access” come from?)

Code addresses: program counter (%cs:%eip)
= Straight-line code
= Loops, conditionals
= Procedure calls

Stack area: stack pointer (%ss:%esp, %ss:%ebp)
Data regions (data/bss/heap)

= Most pointers in general purpose registers (%ds:%eb X)

_4- 15-410, F'06

Initialized how?

Program counter
= Set to “entry point” by OS program loader

Stack pointer
= Set to “top of stack” by OS program loader

Registers
= How does my code know the address of thread table[]?

= Some pointers are stored in the instruction stream
for (tp = thread_tabl e,
tp < & hread_table[n threads], ++tp)

= Some pointers are stored in the data segment
struct thread *thr_base = &t hread table[0];

= How do these all point to the right places?

_5- 15-410, F'06

Where does an int live?

Int k = 3;
I nt foo(void) {
return (Kk);
} bss 8192
int a = 0;
int b = 12 dat a 4096

Int bar (void) {
return (a + b);

}

code

_6- 15-410, F'06

Loader: Image File = Memory Image

dat a

code

bss

4096
dat a

code

8192

4096

Image file has header (tells loader what to do)
Memory image has bss segment!

15-410, F'06

Programs are Multi-part

Modularity

= Program can be written as a collection of smallers ource files,
rather than one monolithic mass.

= Can build libraries of common functions (more on th IS later)
= e.g., Math library, standard C library

Efficiency (time)
= Change one source file, compile, and then relink.
= No need to recompile other source files.

“Link editor” combines objects into one image file
= Unix “link editor” called “Id”

_8- 15-410, F'06

Linker Todo List

Merge object files

= Merges multiple relocatable (. 0) object files into a single executable
object file that can loaded and executed by the loa der.

Resolve external references

= As part of the merging process, resolves externalr eferences.
= External reference : reference to a symbol defined in another objectf ile.

Relocate symbols

= Relocates symbols from their relative locations in the . o files to
new absolute positions in the executable.

= Updates all references to these symbols to reflect their new
positions.

= \What does this mean??

_ Q- 15-410, F'06

Every .0 uses same address space

bss
bss
dat a [
dat a
code - code

-10 - 15-410, F'06

Combining .0's Changes Addresses

bss

bss

dat a
dat a

code

code

- 11 - 15-410, F'06

| Inker uses relocation information

Field

= address, bit field size

Field type

= relative, absolute

Field reference
= symbol name

Example
= “Bytes 1024..1027 of foo.o refer to absolute addres s of _main”

_12 - 15-410, F'06

Example C Program

- 13- 15-410, F'06

Merging Relocatable Object
Files = Executable Object File

Relocatable Object Files

system code

system data

mai n()

int e = 7

a()
a.o[int *ep = &e
Int x = 15
Int vy

- 14 -

.t ext
. dat a

. text

. dat a

. text

. dat a
. bss

~

/

Executable Object File

0

headers

\

system code

mai n()

a()

more system code

system data
Nt e = 7/

Int *ep = &e

Nt X = 156

uninitialized data

.synt ab

> .t ext

ANE

. .data

. bss

. debug

15-410, F'06

Relocating Symbols and Resolving

External References

= Symbols are lexical entities that name functions and varia

= Each symbol has a value (typically a memory address).

= Code consists of symbol

= Refere

Def of local
symbol e

nces can be either

m C

I nt e=7;

//

int main() {
int r = a();

Ref to external
symbol exit
(defined in

| 1 bc. so)

- 15 -

: exit(O)/
/

Ref to external
symbol a

Def of
local
symbol
ep

local or external .

definitions and references .

bles.

a.c
extern int e;
i nt *ep=&e;
| e Ref to
:nt y-_15’ \\ external
’ symbol
int a() { Defs of
return *ep+x+y; T~ |gcal
} 1 symbols
| | X and y
Def of Refs of local
local symbols ep, X,y
symbol a 15-410, F'06

e

Executable File / Image File

Linked program consists of multiple “sections”

= Section properties
= Type
= Memory address

Common Executable File Formats
= a.out - “assembler output” (primeval Unix format: 7
= Mach-O —Mach Object (used by MacOS X)
= ELF —Executable and Linking Format

- 16 -

0's, 80's)

15-410, F'06

Executable File / Image File

Linked program consists of multiple “sections”

= Section properties
= Type
= Memory address

Common Executable File Formats
= a.out - “assembler output” (primeval Unix format: 7 0's, 80's)
= Mach-O —Mach Object (used by MacOS X)

= ELF —Executable and Linking Format
= (includes “DWARF” - Debugging With Attribute Record Format)

_17 - 15-410, F'06

Executable and Linkable Format
(ELF)

Standard binary format for object files

Derives from AT&T System V Unix
= Later adopted by BSD Unix variants and Linux

One unified format for
= Relocatable object files (. 0)

= Executable object files
= Shared object files (. s0)

Generic name: ELF binaries
Better support for shared libraries than old a. out formats.

_18 - 15-410, F'06

ELF Object File Format

ELF header

= Magic number, type (.0, exec, .s0),
machine, byte ordering, etc.

Program header table
= Page size, virtual addresses memory

segments (sections), segment sizes.
. t ext section
= Code

.rodat a, .data section
= [nitialized (static) data (ro = “read-only”)

. bss section
= Uninitialized (static) data
= “Block Started by Symbol”
= “Better Save Space”

= Has section header but occupies no space
- 19 -

ELF header

Program header table
(required for executables)

. t ext section

. r odat a section

. dat a section

. bss section

.synt ab

.rel .txt

.rel .data

. debug

Section header table
(required for relocatables)

15-410, F'06

ELF Object File Format (cont)

. synt ab section
= Symbol table

Procedure and static variable names
Section names and locations

. t ext section

.t ext section

Addresses of instructions that will need to
be modified in the executable

Instructions for modifying.

Relocation info for

. dat a section

Relocation info for . dat a section

Addresses of pointer data that will need to
be modified in the merged executable

. debug section

= [nfo for symbolic debugging (

- 20 -

gcc -9)

ELF header

Program header table
(required for executables)

. t ext section

. r odat a section

. dat a section

. bss section

.synt ab

.rel .txt

.rel .data

. debug

Section header table
(required for relocatables)

15-410, F'06

“Not needed on voyage

Some sections not needed for execution
= Symbol table
= Relocation information
= Symbolic debugging information

These sections not loaded into memory

May be removed with “strip” command
= Or retained for future debugging

_21-

ELF header

Program header table
(required for executables)

. t ext section

. r odat a section

. dat a section

. bss section

.synt ab

Loading ELF Binaries

Executable object file for
example program p

0
ELF header Virual add
: irtual addr
Program header table Process image
(required for executables) init and shared lip | ©X080483€0
.text section segments
.rodata section 0x08048494
. t ext segment
.data section (r/0)
.bss section 0x08049000
. rodat a segment
.symtab (r/0)
rel.text 0x0804a010
. dat a segment
Tel.data (initialized r/w)
debug 0x0804a3b0
Section header table : bSS S_egment
(required for relocatables) (uninitialized r/w)

- 22 - 15-410, F'06

Getting Help

Writing your first loader should be fun
= But some parts might be “fun” instead

A tool you can use
= gdb
% gdb init
(gdb) x/i main
0x1000020 <main>: push %ebp
(gdb) x/x main
0x1000020 <main>: 0x83e58955

= Ok, now you have a cross-check!

Other tools which tell you where executable parts b
" nm
= objdump

_23-

elong

15-410, F'06

Summary

Where do addresses come from?
Where does an int live?

Image file vs. Memory image

Linker
= What, why
= Relocation

ELF structure

= The pieces which need to be loaded into memory by
somebody

= Somebody whose name is a lot like yours...

_24 - 15-410, F'06

