15-410

“Luckily the stack is a simple data structure.”

The Process
Sep. 11, 2006

Dave Eckhardt
Bruce Maggs

LO6_Process 15-410,F'06

Synchronization

P2/P3/P4 partners

= Partner deadline coming soon!

= |f you already know who your partner is, please reg
now
= |t makes it easier for others to partner
= |t will stem the tide of annoying reminder e-malil

Ister

15-410,F'06

Synchronization

Exam scheduling

Please check schedules for your other classes!

-3

* Exam: October 10 ™, P3ckl: October 16 ™
* P3ckl: October 13 ", Exam: October 17 °

Cct ober 2006

Su
1
8

15

22

29

\%o)
2
9

16

23
30

Tu

VW Th
4 5
11 12
18 19
25 26

Fr Sa
6 7
13 14

20 21
27 28

15-410,F'06

Synchronization

Anybody reading comp.risks?

This lecture

= Chapter 3, but not exactly!

= We are skipping 3.5 and 3.6, including the terrifyi
Shared Memory”

ng “POSIX

15-410,F'06

Outline

Process as pseudo-machine
= (that's all there is)

Process life cycle
Process kernel states
Process kernel state
P1/P3 memory layout

= (just a teaser for now)

15-410,F'06

The Computer

- -6 15-410,F'06

The Process

-7 15-410,F'06

Process life cycle
(nomenclature courtesy of The Godfathers)

Birth
= (or, well, fission)
School
Work
Death

8 15-410,F'06

Birth

Where do new processes come from?
= (Not: under a cabbage leaf, by stork, ...

What do we need?

= Memory contents
= Text, data, stack

= CPU reqister contents (N of them)

= “l/O ports”
= File descriptors, e.g., stdin/stdout/stderr

= Hidden “stuff”
= timer state, current directory, umask

N

15-410,F'06

Birth

Intimidating?

How to specify all of that stuff?
= What is your {name,quest,favorite_color}?

Gee, we already have one process we like...
= Maybe we could use its settings to make a new one..
= Birth via “cloning”

- -10

15-410,F'06

Birth —fork() - 1

“fork™ - Original Unix process creation system call

Memory
= Copy all of it
= Later lecture: VM tricks may make copy cheaper

Registers

= Copy all of them
= All but one: parent learns child's process ID, chil dgets O

- 11 15-410,F'06

Birth —fork() - 2

File descriptors
= Copy all of them
= Can't copy the files!
= Copy references to open-file state

Hidden stuff

= Do whatever is "obvious"

Result
= QOriginal, “parent”, process

= Fully-specified “child” process, despite 0 paramete
fork()

- -12

s to

15-410,F'06

Now what?

Two copies of the same process is boring

Transplant surgery!

= Implant new memory!
= New program text

= |mplant new registers!
= Old ones don't point well into the new memory

= Keep (most) file descriptors
= (Good for cooperation/delegation

» Hidden state?
= Do what's “obvious”

- -13

15-410,F'06

Original Process

.14

15-410,F'06

Toss Heap, Data

- -15

15-410,F'06

Load New Code, Data From File

- -16

15-410,F'06

Reset Stack, Heap

- .17

15-410,F'06

Fix “Stuff”

- -18

Initialize Registers

15-410,F'06

Begin Execution

15-410,F'06

What's The Implant Procedure

Called?

- 21

| Nt
C
C
C

execve(
nar *pat h,
nar *argv|],

nar *envp|])

15-410,F'06

Birth - other ways

There is another way
= Well, two

spawn()

= Carefully specify all features of new process
= Complicated

= Win: don't need to copy stuff you will immediately

Plan 9 rfork() / Linux clone()

= Build new process from old one

= Specify which things get shared vs. copied
= “Copy memory, share files, copy environment, share

- 22

toss

15-410,F'06

School

Old process called
execve(

char *pat h,
char *argv[],
char *envp[]);

Result is
mai n(iI nt argc,

char *argv[],
char *envp[])

- -23

15-410,F'06

School

How does the magic work?
= 15-410 motto: No magic

Kernel process setup: we saw...

= Toss old data memory
= Toss old stack memory
= Load executable file

Also...

.24

15-410,F'06

The Stack!

Kernel builds stack for new process
= Transfers argv[] and envp[] to top of new process s
= Hand-crafts stack frame for __main()

= Sets registers
= Stack pointer (to top frame)
= Program counter (to start of __main())

- -25

tack

15-410,F'06

Work

Process states

= Running

= User mode or kernel mode
= Runnable

= User mode or kernel mode

» Be sure to understand this

= Sleeping

= “Blocked” awaiting some event

= Scheduler: “do not run”
= Q: User mode, kernel mode, both, neither?

- -26

15-410,F'06

Work

Other process states

= Forking
= Probably obsolete, once used for special treatment

= Zombie
= Process has called exit(), parent hasn't noticed ye

“Exercise for the reader”
= Draw the state transition diagram

.27

t

15-410,F'06

Death

Voluntary
void exit(int reason);

Hardware exception
= SIGSEGV - no memory there for you!

Software exception
= SIGXCPU —used "too much" CPU time

- -28

15-410,F'06

Death

kill(pid, sig);
= Keyboard C= equivalent of
= kill(getpid(), SIANT);
= Start logging
= kill (daenon_pid, SIGJSRL);
= % kill -USRL 33
= This is a “non-kill” use of Kill ()

- -29

15-410,F'06

Death

kill(pid, sig);

= Keyboard C= equivalent of
= kill(getpid(), SIANT);

= Start logging
= kill (daenon_pid, SIGJSRL);
= % kill -USRL 33
= This is a “non-kill” use of Kill ()

= Lost I n Space
= kill (WII| _Robinson, SIGANGER);

- -30

15-410,F'06

Death

kill(pid, sig);

= Keyboard C= equivalent of
= kill(getpid(), SIANT);

= Start logging
= kill (daenon_pid, SIGJSRL);
= % kill -USRL 33
= This is a “non-kill” use of Kill ()

= Lost I n Space
= kill (WII| _Robinson, SIGANGER);

= | apologize to IBM for lampooning their serious sig

- -31

nal

15-410,F'06

Death

kill(pid, sig);

= Keyboard C= equivalent of
= kill(getpid(), SIANT);

= Start logging
= kill (daenon_pid, SIGJSRL);
= % kill -USRL 33
= This is a “non-kill” use of Kill ()

= Lost I n Space
= kill (WII| _Robinson, SIGANGER);

= | apologize to IBM for lampooning their serious sig
» No, | apologize for that apology...

- -32

nal

15-410,F'06

Process cleanup

Resource release

= Open files: close() each
= TCP: 2 minutes (or more)
= Solaris disk offline - forever (* None shall pass!”)

= Memory: release

Accounting
= Record resource usage in a magic file

Gone?

- -33

15-410,F'06

“All You Zombies...”

Zombie process
= Process state reduced to exit code

= Waits around until parent calls wait()
= EXit code copied to parent's memory
= PCB deleted from kernel

.34

15-410,F'06

Kernel process state

The dreaded "PCB"
= (polychlorinated biphenol?)

Process Control Block

= “Everything without a user-visible memory address”
= Kernel management information
= Scheduler state
= The “stuff”

- -39

15-410,F'06

Sample PCB contents

Pointer to CPU register save area
Process number, parent process number
Countdown timer value

Memory segment info
= User memory segment list
= Kernel stack reference

Scheduler info
= linked list slot, priority, “sleep channel”

- -36

15-410,F'06

15-410 Virtual Memory Layout

. .37

4096 MB

16 MB

15-410,F'06

15-410 Physical Memory Layout

User Memoryz 240 MB

Kernel Memory- 16 MB

- .38 15-410,F'06

Ready to Implement All This?

Not so complicated...
" getpid()
= fork()
= exec()
= wait()
= exit()

What could possibly go wrong?

- -39

15-410,F'06

Summary

Parts of a Process
= Physical -Memory pages, registers, 1/O devices
= Virtual —-Memory regions, registers, 1/O “ports”

Birth, School, Work, Death

“Big Picture” of system memory —both of them
= (Numbers & arrangement are 15-410-specific)

- 40 15-410,F'06

