
Atomic Transactions

December 5, 2005

Jeffrey L. Eppinger
Professor of the Practice

School of Computer Science

15-410

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

2

So Who Is This Guy?

Jeff Eppinger (eppinger@cmu.edu, EDSH 229)
– Ph.D. Computer Science (CMU 1988)

– Asst Professor of Computer Science (Stanford 1988-1989)

– Co-founder of Transarc Corp. (Bought in 1994 by IBM)
• Transaction Processing Software

• Distributed File Systems Software

– IBM Faculty Loan to CMU eCommerce Inst. (1999-2000)

– Joined SCS Faculty in 2001

– Lecture Style: ¿Questioning?

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

3

What Do Transactions Do?

• They ensure the consistency of data

– In the face of concurrency
– In the face of failure

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

4

When Are Transactions Used?

• When you use:
– Databases

– File Systems

• Things built on the above
– Banking Applications

– BeanFactories

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

5

Who Invented Atomic Transactions?

• The guys that built TP Monitors

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

6

Next

• We’ll talk about the details
– The guarantees

– How to provide them

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

7

Do You Do ACID?

• What is ACID?

• The ACID Properties of a Transaction:
– Atomicity: all or none

– Consistency: if consistent before transaction, so too after

– Isolation: despite concurrent execution, ∃ serial ordering

– Durability: committed transaction cannot be undone

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

8

What is a BBoard?

• So you know what a BBoard is…here’s a BBoard story

• Nico had a secretary, Suzanna

• CS Ph.D. students not nice on the BBoard

• Suzanna makes post – calls students profane names

• My Ph.D. student friend Dan responds

• Suzanna gets facilities to delete her message

• Dan says – whoa, what about the ACID properties?

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

9

Remember the
ACID Properties?

Atomicity: all or none

Consistency: if before than after

Isolation: serial ordering

Durability: cannot be undone

• Atomicity: No partial messages/updates
– Whole messages, index refers to all messages, etc

• Consistency: BBoard transactions (apps) do “all work”
– App must update all relevant data and do it correctly

• Isolation: no showing of “uncommitted” work
– If concurrent postings…

• Durability: No unposting
– Also, no cascading “aborts”

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

10

What is a Transaction?

• A group of sub-operations that as a whole
conform to the ACID properties

 private BankAccount savings = new BankAccount(…);
 private BankAccount checking = new BankAccount(…);
 public void transferStoC(double amount) throws … {
 savings.write(savings.read()-amount);
 checking.write(checking.read()+amount);
 }
 public void transferCtoS(double amount) throws … { }

• You want these transfers to be ACID

Let’s
be more
concrete

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

11

Remember the
ACID Properties?

• Let’s consider the ACID properties for these
transfer “transactions”:

 private BankAccount savings = new BankAccount(…);
 private BankAccount checking = new BankAccount(…);
 public void transferStoC(double amount) throws … {
 savings.write(savings.read()-amount);
 checking.write(checking.read()+amount);
 }
 public void transferCtoS(double amount) throws … { }

• So how do you make this work?

Atomicity: all or none

Consistency: if before than after

Isolation: serial ordering

Durability: cannot be undone

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

12

Example Implementation

public class BankAccount {
 private double balance;

 public double getBalance() {
 return balance;
 }

 public void setBalance(double x) {
 balance = x;
 }
}

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

13

 private BankAccount savings = new BankAccount(…);
 private BankAccount checking = new BankAccount(…);
 public void transferStoC(double amount) throws … {
 savings.write(savings.read()-amount);
 checking.write(checking.read()+amount);
 }
 public void transferCtoS(double amount) throws … { }

 public class BankAccount {
 private double balance;
 public double getBalance() { return balance; }
 public void setBalance(double x) { balance = x; }
 }

Remember the
ACID Properties?

Atomicity: all or none

Consistency: if before than after

Isolation: serial ordering

Durability: cannot be undone

ÿ

ÿ

�

�

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

14

How About
This One?

public class BankAccount {
 private static RandomAccessFile f = new Ra…("…","rws");
 private long myPosInFile = …;
 public double getBalance() throws IOException {
 synchronized (f) {
 f.seek(myPosInFile);
 return f.readDouble();
 }
 }
 public void setBalance(double x) throws IOException {
 synchronized (f) {
 f.seek(myPosInFile);
 f.writeDouble(x);
 }
 }
}

Atomicity: all or none

Consistency: if before than after

Isolation: serial ordering

Durability: cannot be undone�

�

�

ÿ

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

15

How Does Data Get Written to Disk?

• Does the OS buffer the writes?

• Does the disk write happen atomically?

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

16

You Need to Delineate
the Transaction

 public void transferStoC(double amount) throws … {

 Transaction.begin();

 savings.write(savings.read()-amount);

 checking.write(checking.read()+amount);

 Transaction.commit();

 }

public class Transaction {

 private static ThreadLocal tid = new ThreadLocal();

 public static void begin() { tid.set(nextTid()); }

 public static void commit() { /* hard work goes here */ }

 public static void rollback() { /* hard work goes here */ }

}

Let’s
Address
Isolation

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

17

How Are ACID Properties Enforced?

 public void transferStoC(double amount) throws … {
 Transaction.begin();
 savings.write(savings.read()-amount);
 checking.write(checking.read()+amount);
 Transaction.commit();
 }

• Atomicity – logging
• Consistency – app’s problem
• Isolation – locking
• Durability – logging

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

18

Remind You of Something?

• A Relational Database
– Any database

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

19

How Does a Relational DB Do It? (1)

• Consistency
– Code must be correct

• Isolation
– Two-phased read-write locking
– Read-intent-write lock & ordering

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

20

More on Locking (1)

• Two-phased locking?
– Grab locks and keep then until until end-of-

transaction, so others won’t see uncommitted
changes

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

21

More on Locking (2)

• Avoiding Lock-out
– Ordering to avoid deadlocks … if all transactions (threads)

grab locks in “alphabetical” order (or any specific ordering)
– Read-intent-write lock … keeps a stream of readers from

livelocking our writers

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

22

How Does a Relational DB Do It? (2)

• Atomicity & Durability
– Buffer database disk pages in memory

– Log all changes in a write-ahead log
• When changing data pages, describe in log recs

• When flushing data pages, check that log flushed

• When committing, commit-record into log, flush log

– Recover from the log
• When rolling back, scan log and undo

• When restarting after a failure, scan the log
– Undo transactions without commit records, as necessary

– Redo transactions with commit records, as necessary

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

23

How Do You Describe Changes

• Value Logging
– E.g., old value = 4, new value = 5

• Operation Logging
– E.g., increment by 1

5-D
ec-2005

15-410
 A

tom
ic T

ransactions
C

opyright (C
) 2004-2

005 J. L. E
ppinger

24

S
am

ple Log

…

Change rec:
tid #584

acct <savings>
old-value: $100
new-value: $80

Change rec:
tid#584

acct <checking>
old-value: $3

new-value: $23

Commit rec:
tid#584

…
…

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

25

How Does a Relational DB Do It? (2)

• Atomicity & Durability
– Buffer database disk pages in memory

– Log all changes in a write-ahead log
• When changing data pages, describe in log recs

• When flushing data pages, check that log flushed

• When committing, commit-record into log, flush log

– Recover from the log
• When rolling back, scan log and undo

• When restarting after a failure, scan the log
– Undo transactions without commit records, as necessary

– Redo transactions with commit records, as necessary

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

26

How Does a Relational DB Do It? (3)

• More on Atomicity & Durability
– Databases are very careful when they write to disk

– They control the buffering of pages in memory

– The log is append-only, order of records counts
• If commit rec present, preceded by descrip. of changes…

• If descrip of changes present, without commit rec …

• We track the last log rec # that applies to ea data page…
– Log recs describing changes, go out before the page w/changes

– Often, we put the last log rec # on each data page

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

27

What is the Atomicity of Disk Writes?

• When you write to the disk, does it all go out?
– Sector = 512 bytes

– Track = n Sectors

– Block (or page) = m Sectors

• OS writes blocks

• Disk has ECC codes…can detect partial sector

• How do you detect if you have a partial block?

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

28

Bad blocks

• A block is bad if it’s partially written
– ECC detects sector error

– Our tags on the sectors don’t match

• If a log block is bad…it had better be part
of the last write…good idea: mirror the log

• If data block (page) is bad…restore from
backup and apply all committed changes

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

29

Caveat

• This is just a basic example of how a database
really works

• There are many, many optimizations
– E.g., checkpointing the log limits recovery scan

– E.g., operation logging permits add’l locking modes
• E.g., increment locks

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

30

Why Is This Relevant to OS?

• Databases stole all this from operating systems

• Some OS services require ACID properties

• Let’s start in the beginning…

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

31

In the Old Days
• Structured files (containing records)

– Entry-sequenced (append-only)

– Relative (array)

– B-tree clustered (hash table)

• Secondary access methods

• Many field types
– Character data

– Integers

– Floats

– Dates

Root

…

George
Bush John

Kerry

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

32

Today we have Relational Databases
• Structured files

– Entry-sequenced (append-only)

– Relative (array)

– B-tree clustered (hash table)

• Secondary access methods

• Many field types
– Character data

– Integers

– Floats

– Dates

SQL

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

33

In the Old Days

• First, atomic transactions were added on at
application-level (in TP Monitors)

• Then they were added to OS (mostly research OSs)

• Then they were back in the app with RBDs

• Then they were generalized to create DTP

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

34

Distributed Two-Phase Commit

• You can have distributed transactions
– RPC, access multiple databases, etc
– DTP: Prepare Phase (subs flush), Commit Phase (coord flush)

 public void transferStoC(double amount) throws … {
 Transaction.begin();
 savings.write(savings.read()-amount);
 checking.write(checking.read()+amount);
 Transaction.commit();
 }

Savings Checking

App
Server

Log

LogLog

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

35

Why Do You Care?

• RDBs are happy to manage whole disks

• There is more to life than relational data
– HTML, Images, Office Docs, Source, Binaries

• If you don’t otherwise need a RDB, put your
files in a file system

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

36

File Systems & Transactions

• If you don’t allow user-level apps to compose
transactions, implementation is easier

• FS Ops that require ACID properties:
– For sure: create, delete, rename, modify properties

– Often: write

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

37

How File Systems Implement ACID?

• Carefully writing to the disk
– DBs are careful, too

• Older/cheaper file systems are not log-based
– scandisk, chkdsk, fsck

• Newer file systems are log-based
– E.g., NTFS, Network Appliance’s NFS, JFS

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

38

How Do I Use Transactions?

• JavaBeans
– BeanFactories

• Exclusive locks

• When backed by database:
– DB provided ACID properties

• When backed by file systems
– One big lock for concurrency control

– Rename (aka pointer swap) for atomicity

– Backup for durability (weak)

5-Dec-2005 15-410 Atomic Transactions
Copyright (C) 2004-2005 J. L. Eppinger

39

Any Questions?

