
15-410, F'05- 1 -

Protection
Nov. 28, 2005

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L33_Protection

15-410
“...1969 > 1999?...”

15-410, F'05- 2 -

Synchronization

If you are doing P3extra...If you are doing P3extra...

� Let us know if you don't have a writable “p3extra”
directory!

If you are doing P4...If you are doing P4...

� I think we should see more registrations!

15-41215-412

� If this was fun...

� If you want to see how it's done “in real life”,

� If you want to write real OS code used by real people,

� Consider 15-610 (Spring '06), 15-412 (Fall '06)

15-410, F'05- 3 -

Outline

Protection (Chapter 14)Protection (Chapter 14)

� Protection vs. Security

� Domains (Unix, Multics)

� Access Matrix

� Concept, Implementation

� Revocation – not really covered today (see text)

Mentioning EROSMentioning EROS

15-410, F'05- 4 -

Protection vs. Security

Textbook's distinctionTextbook's distinction

� Protection happens inside a computer

� Which parts may access which other parts (how)?

� Security considers external threats

� Is the system's model intact or compromised?

15-410, F'05- 5 -

Protection

GoalsGoals

� Prevent intentional attacks

� “Prove” access policies are always obeyed

� Detect bugs

� “Wild pointer” example

Policy specificationsPolicy specifications

� System administrators

� Users - May want to add new privileges to system

15-410, F'05- 6 -

Objects

HardwareHardware

� Exclusive-use: printer, serial port, CD writer, ...

� Fluid aggregates: CPU, memory, disks, screen

LogicalLogical objects objects

� Files

� Processes

� TCP port 25

� Database tables

15-410, F'05- 7 -

Operations

Depend on objectDepend on object

� CPU: context_switch(...), <interrupt>

� Disk: read_sector(), write_sector()

� CD-ROM: read_sector(...)

15-410, F'05- 8 -

Access Control

Basic access controlBasic access control

� Your processes should access only “your stuff”

� Implemented by many systems

Principle of least privilegePrinciple of least privilege

� (text: “need-to-know”)

� cc -c foo.c

� should read foo.c, stdio.h, ...

� should write foo.o

� should not write ~/.cshrc

� This is harder

15-410, F'05- 9 -

Who Can Do What?

access right = (object, operations)access right = (object, operations)

� /etc/passwd, r

� /etc/passwd, r/w

process process → → protection domainprotection domain

� P0 → de0u, P1 → bmm, ...

protection domain protection domain →→ list of access rights list of access rights

� de0u → (/etc/passwd, r), (/afs/andrew/usr/de0u/.cshrc, w)

15-410, F'05- 10 -

Protection Domain Example

Domain 1Domain 1

� /dev/null, read/write

� /usr/davide/.cshrc, read/write

� /usr/bmm/.cshrc, read

Domain 2Domain 2

� /dev/null, read/write

� /usr/bmm/.cshrc, read/write

� /usr/davide/.cshrc, read

15-410, F'05- 11 -

Using Protection Domains

Least privilege requires Least privilege requires domain changesdomain changes

� Doing different jobs requires different privileges

� One printer daemon, N users

� Print each user's file with minimum necessary privileges...

Two general approachesTwo general approaches

� “process → domain” mapping constant

� Requires domains to add and drop privileges

� User “printer” gets & releases permission to read your file

� Domain privileges constant

� Processes domain-switch between high-privilege, low-
privilege domains

� Printer process opens file as you, opens printer as “printer”

15-410, F'05- 12 -

Protection Domain Models

Three modelsThree models

� Domain = user

� Domain = process

� Domain = procedure

15-410, F'05- 13 -

Domain = User

Object permissions depend on Object permissions depend on who you arewho you are

All processes you are running share privilegesAll processes you are running share privileges

Domain switch = Log off, log onDomain switch = Log off, log on

15-410, F'05- 14 -

Domain = Process

Resources managed by special processesResources managed by special processes

� Printer daemon, file server process, ...

Domain switchDomain switch

� Objects cross domain boundaries via IPC

� “Please send these bytes to the printer”
 /* concept only; pieces missing */
 s = socket(AF_UNIX, SOCK_STREAM, 0);
 connect(s, pserver, sizeof pserver);
 mh->cmsg_type = SCM_RIGHTS;
 mh->cmsg_len[0] = open(“/my/file”, 0, 0);
 sendmsg(s, &mh, 0);

15-410, F'05- 15 -

Domain = Procedure

Processor limits access at fine grainProcessor limits access at fine grain

� Hardware protection on a per-variable basis!

Domain switch – Domain switch – Inter-domain procedure callInter-domain procedure call

� nr = print(strlen(buf), buf);

� “The correct domain” for print()

� Access to OS's data structures

� Permission to call OS's internal putbytes()

� Permission to read user's buf

� Ideally, correct domain automatically created by hardware

� Common case: “user mode” vs. “ kernel mode”
» Not a fine grain, but simple for hardware to implement

15-410, F'05- 16 -

Unix “setuid” concept

Assume Unix domain = numeric user idAssume Unix domain = numeric user id

� Not the whole story! This overlooks:

� Group id, group vector

� Process group, controlling terminal

� Superuser

� But let's pretend for today

Domain switch via Domain switch via setuid executablesetuid executable

� Special permission bit set with chmod

� Meaning: exec() changes uid to executable file's owner

� Gatekeeper programs

� “lpr” run by anybody can access printer's queue files

15-410, F'05- 17 -

Access Matrix Concept

ConceptConcept

� Formalization of “who can do what”

Basic ideaBasic idea

� Store all permissions in a matrix

� One dimension is protection domains

� Other dimension is objects

� Entries are access rights

15-410, F'05- 18 -

Access Matrix Concept

File1 File2 File3 Printer

rwxd rD1

r rwxd wD2

rwxd rwxd rwxd wD3

r r rD4

15-410, F'05- 19 -

Access Matrix Details

OS must still define process OS must still define process → → domain mapping domain mapping

OS must define, enforce domain-switching rulesOS must define, enforce domain-switching rules

� Ad-hoc approach

� Special domain-switch rules (e.g., log off/on)

� Can encode domain-switch in access matrix!

� Switching domains is a privilege like any other...

� Add domain columns (domains are objects)

� Add switch-to rights to domain objects
» “D2 processes can switch to D1 at will”

� Subtle (dangerous)

15-410, F'05- 20 -

Adding “Switch-Domain” Rights

File1 File2 File3 D1

rwxd rD1

r rwxd sD2

rwxd rwxd rwxdD3

r r rD4

15-410, F'05- 21 -

Updating the Matrix

Ad-hoc approachesAd-hoc approaches

� “System administrator” can update matrix

Matrix approachMatrix approach

� Add copy rights to objects

� Domain D1 may copy read rights for File2

� So D1 can give D2 the right to read File2

15-410, F'05- 22 -

Adding Copy Rights

File1 File2 File3

rwxdR rD1

r rwxdD2

rwxd rwxd rwxdD3

r r rD4

15-410, F'05- 23 -

Adding Copy Rights

File1 File2 File3

rwxdR rD1

r r rwxdD2

rwxd rwxd rwxdD3

r r rD4

15-410, F'05- 24 -

Updating the Matrix

Add Add owner rightsowner rights to objects to objects

� D1 has owner rights for O47

� D1 can modify the O47 column at will

� Can add, delete rights to O47 from all other domains

Add Add control rightscontrol rights to domain objects to domain objects

� D1 has control rights for D2

� D1 can modify D2's rights to any object

� D1 may be teacher, parent, ...

15-410, F'05- 25 -

Access Matrix Implementation

Implement matrix via matrix?Implement matrix via matrix?

� Huge, messy, slow

VeryVery clumsy for... clumsy for...

� “world readable file”

� Need one entry per domain

� Must fill rights in when creating new domain

� “private file”

� Lots of blank squares
» Can Alice read the file? - No
» Can Bob read the file? - No
» ...

Two options – “ACL” , “capabilities”Two options – “ACL” , “capabilities”

15-410, F'05- 26 -

Access Control List

File1

D1

rD2

rwxdD3

rD4

15-410, F'05- 27 -

Access Control List (ACL)

List per matrix column (object)List per matrix column (object)

� de0u, read; bmm, read+write

Naively, domain = userNaively, domain = user

AFS ACLsAFS ACLs

� domain = user, user:group, system:anyuser, machine list
(system:campushost)

� positive rights, negative rights

� de0u:staff rlid

� mberman -id

Doesn't really do Doesn't really do least privilegeleast privilege

� System stores many privileges per user, permanently...

15-410, F'05- 28 -

Capability List

File1 File2 File3

rwxdR rD1

15-410, F'05- 29 -

Capability Lists

CapabilityCapability Lists Lists

� List per matrix row (domain)

� Naively, domain = user

� More typically, domain = process

Permit Permit least privilegeleast privilege

� Domains can transfer & forget capabilities

� Bootstrapping problem

� Who gets which rights at boot?

� Who gets which rights at login?

� Typical solution: store capabilities in files somehow

15-410, F'05- 30 -

Mixed Approach

Permanently store ACL for each filePermanently store ACL for each file

� Must get ACL from disk to access file

� ACL fetch & evaluation may be long, complicated

open() checks ACL, creates capabilityopen() checks ACL, creates capability

� Records access rights for this process

� Quick verification on each read(), write()

� Result: per-process fd table caches results of ACL checks

15-410, F'05- 31 -

Internal Protection?

Understood so far:Understood so far:

� Which user process should be allowed to access what?

� Job performed by OS

� How to protect OS code, data from user processes

� Hardware user/kernel boundary

Can we do better?Can we do better?

� Can we protect parts of the OS from other parts?

15-410, F'05- 32 -

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

15-410, F'05- 33 -

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

Smaller
Simpler

More Critical

15-410, F'05- 34 -

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

Equally
Trusted!!

15-410, F'05- 35 -

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

Wild Pointer
Access

15-410, F'05- 36 -

Multics Approach

Trust Trust hierarchyhierarchy

Small “simple” very-trusted Small “simple” very-trusted kernelkernel

� Main job: access control

� Goal: “prove” it correct

Privilege layers (nested “ rings”)Privilege layers (nested “ rings”)

� Ring 0 = kernel, “ inside” every other ring

� Ring 1 = operating system core

� Ring 2 = operating system services

� ...

� Ring 7 = user programs

15-410, F'05- 37 -

Multics Ring Architecture

Segmented virtual address spaceSegmented virtual address space

� One segment per software module

	 “Print module” may contain

 Entry points
» list_printers(), list_queue(), enqueue(), ...

 Data area
» List of printers, accounting data, queues

	 Segment ≡ file (segments persist across reboots)

Access checked by hardwareAccess checked by hardware

	 Which procedures can you call?

	 Is access to that segment's data legal?

15-410, F'05- 38 -

Multics Rings

File System
Page Store

Disk

Kernel

15-410, F'05- 39 -

Multics Rings

File System
Page Store

Disk

Kernel
Wild Pointer

Access

15-410, F'05- 40 -

Multics Rings

File System
Page Store

Disk

Kernel
Wild Pointer

Access

 Fault

15-410, F'05- 41 -

Multics Domain Switching

CPU has CPU has current ring numbercurrent ring number register register

	 Current privilege level, [0..7]

Segment descriptors includeSegment descriptors include

	 Ring number

	 Access bracket [min, max]

 Segment “appears in” ring min...ring max

	 Access bits (read, write, execute)

	 Entry limit

	 List of gates (procedure entry points)

15-410, F'05- 42 -

Multics Domain Switching

Every procedure call is a potential domain switchEvery procedure call is a potential domain switch

Calling a procedure at current privilege level?Calling a procedure at current privilege level?

	 Just call it

Calling a more-privileged procedure?Calling a more-privileged procedure?

	 Make sure entry point is legal

	 Enter more-privileged mode

	 It can read & write all of our data

Calling a less-privileged procedure?Calling a less-privileged procedure?

	 We want to show it some of our data (procedure params)

	 We don't want it to modify our data

15-410, F'05- 43 -

Multics Domain Switching

min <= current-ring <= maxmin <= current-ring <= max

	 Procedure is “part of” rings 2..4

	 We are executing in ring 3

	 Standard procedure call

15-410, F'05- 44 -

Multics Domain Switching

current-ring > maxcurrent-ring > max

	 Calling a more-privileged procedure

	 It can do whatever it wants to us

ImplementationImplementation

	 Hardware traps to ring 0

	 Ring 0 checks current-ring < entry-limit

 User code may be forbidden to call ring 0 directly

	 Checks call address is a legal entry point

	 Set current-ring to segment-ring

	 Runs procedure call

15-410, F'05- 45 -

Multics Domain Switching

current-ring < mincurrent-ring < min

� Calling a less-privileged procedure

ImplementationImplementation

� Trap to ring 0

� Ring 0 copies “privileged” procedure call parameters

� Must be in low-privilege segment for callee to access

� Set current-ring to segment-ring

� Run procedure call

15-410, F'05- 46 -

Multics Ring Architecture

Does this look familiar?Does this look familiar?

BenefitsBenefits

� Core security policy small, centralized

� Damage limited vs. Unix “superuser” ' model

ConcernsConcerns

� Hierarchy ≠ least privilege

� Requires specific hardware

� Performance (maybe)

15-410, F'05- 47 -

More About Multics

Back to the futureBack to the future

� Symmetric multiprocessing

� Hierarchical file system (access control lists)

� Memory-mapped files

� Hot-pluggable CPUs, memory, disks

* 1969!!!

Significant influence on UnixSignificant influence on Unix

� Ken Thompson was a Multics contributor

www.multicians.orgwww.multicians.org

15-410, F'05- 48 -

Mentioning EROS

Text mentions Hydra, CAPText mentions Hydra, CAP

� Late 70's, early 80's

� Dead

EROS (“Extremely Reliable Operating System”)EROS (“Extremely Reliable Operating System”)

� UPenn, Johns Hopkins

� Based on commercial GNOSIS/KeyKOS OS

� www.eros-os.org

15-410, F'05- 49 -

EROS Overview

“Pure capability” system“Pure capability” system

� “ACLs considered harmful”

“Pure principle system”“Pure principle system”

� Don't compromise principle for performance

Aggressive performance goalAggressive performance goal

� Domain switch ~100X procedure call

Unusual approach to capability-bootstrap problemUnusual approach to capability-bootstrap problem

� Persistent processes!

15-410, F'05- 50 -

Persistent Processes??

No such thing as rebootNo such thing as reboot

Processes last “ forever” (until exit)Processes last “ forever” (until exit)

OS kernel checkpoints system state to diskOS kernel checkpoints system state to disk

� Memory & registers defined as cache of disk state

Restart restores system state into hardwareRestart restores system state into hardware

“Login” “Login” reconnectsreconnects you to your processes you to your processes

15-410, F'05- 51 -

EROS Objects

Disk pagesDisk pages

� capabilities: read/write, read-only

Capability nodesCapability nodes

� Arrays of capabilities

NumbersNumbers

� Protected capability ranges

� “Disk pages 0...16384”

Process – executable nodeProcess – executable node

15-410, F'05- 52 -

EROS Revocation Stance

ReallyReally revoking access is hard revoking access is hard

 The user could have copied the file

Don't give out real capabilitiesDon't give out real capabilities

 Give out proxy capabilities

 Then revoke however you wish

VerdictVerdict

 Not really satisfying

 Unclear there is a better answer

� Palladium/” trusted computing” isn't clearly better

15-410, F'05- 53 -

EROS Quick Start

www.eros-os.org/www.eros-os.org/

 reliability/paper.html

 essays/

� capintro.html

� wherefrom.html

� ACLSvCaps.html

NoteNote

 Not much evidence of updates since 2003

15-410, F'05- 54 -

Concept Summary

ObjectObject

 Operations

DomainDomain

 Switching

CapabilitiesCapabilities

 Revoking is hard, see text

“Protection” vs. “security”“Protection” vs. “security”

 Protection is what our sysadmin hopes is happening...

