15-410

“..What goes around comes around...”

Disks
Oct 31st, 2005

Dave Eckhardt & Bruce Maggs
Brian Railing & Steve Muckle

Contributions from
= Eno Thereska, Rahul lyer
= 15-213
= “How Stuff Works” web site

L23 Disks

15-410, F'05

Synchronization

Checkpoint #3
= Checkpoint #3 tonight
= Code Drop + Status/Planning exercise
= See Bboard Post

_92. 15-410, F'05

Overview

Anatomy of a Hard Drive

Common Disk Scheduling Algorithms

_3- 15-410, F'05

Anatomy of a Hard Drive

On the outside, a hard
drive looks like this

Taken from “How Hard Disks Work”
http://computer.howstuffworks.com/hard-disk2.htm

_4 - 15-410, F'05

Anatomy of a Hard Drive

If we take the cover off,
we see that there
actually is a “hard
disk” inside

Taken from “How Hard Disks Work”
http://computer.howstuffworks.com/hard-disk2.htm

_5- 15-410, F'05

Anatomy of a Hard Drive

A hard drive usually
contains multiple
disks, called platters

These spin at
thousands of
RPM (5400,
7200, etc)

Taken from “How Hard Disks Work”
http://computer.howstuffworks.com/hard-disk2.htm

-6 - 15-410, F'05

Anatomy of a Hard Drive

Information is written to
and read from the
platters by the
read/write heads on
the disk arm

Taken from “How Hard Disks Work”
http://computer.howstuffworks.com/hard-disk2.htm

-7 - 15-410, F'05

Anatomy of a Hard Drive

Both sides of each
platter store
Information

Each side of
a platter is
called a
surface

Each surface
has its own
read/write head

Taken from “How Hard Disks Work”
http://computer.howstuffworks.com/hard-disk2.htm

15-410, F'05

Anatomy of a Hard Drive

How are the surfaces organized?

a surface

_9- 15-410, F'05

Anatomy of a Hard Drive

Each surface is divided by concentric circles, creating
tracks

tracks

- 10 - 15-410, F'05

Anatomy of a Hard Drive

These tracks are further divided into

sectors

11 -

15-410, F'05

Anatomy of a Hard Drive

A sector is the smallest
unit of data transfer to
or from the disk

7
Most modern hard ,"'Qt“

drives have 512 byte

sectors S
(CD-ROM sect %
2048 bytzg: o ““g "
Gee, those outer sectors Q’Q 9,
look bigger...

a sectol

_12 - 15-410, F'05

Anatomy of a Hard Drive

Gee, those outer sectors
look bigger...
= More area per bit

= Greater reliability (used by
some operating systems)

= Eventually wasteful (if lots of
tracks per disk)

Is there an alternative?

a sectol

- 13 -

15-410, F'05

Anatomy of a Hard Drive

Modern hard drives
fix this with
zoned bit recording

= Table maps track #
to #sectors

- 14 -

Anatomy of a Hard Drive

Let's read in a sector from the disk

RN
'{{{: ":“‘\ disk rotatles "
read/write head —“““' ‘;" counter-clockwise
N L2
\\Q é;{ desired sector

- 15 - 15-410, F'05

Anatomy of a Hard Drive

We need to do two things to transfer a sector

1. Move the read/write head to the appropriate track
(seek time)

2. Wait until the desired sector spins around
(rotational latency)

- 16 - 15-410, F'05

Anatomy of a Hard Drive

Let's read in a sector from the disk

(5

read/write head “““’2‘ Q
WV

- 17 -

15-410, F'05

Anatomy of a Hard Drive

Let's read in a sector from the disk

(5

read/write head “““’2‘ Q
WV

- 18 -

15-410, F'05

Anatomy of a Hard Drive

Let's read in a sector from the disk

Z
i

»>

z‘&
S

e
read/write head %

- 19 -

15-410, F'05

Anatomy of a Hard Drive

Let's read in a sector from the disk

Z
i

»>

z‘&
S

e
read/write head %

=20 -

15-410, F'05

Anatomy of a Hard Drive

Let's read in a sector from the disk

(/55
' ""22* (X0
read/write head \“:g V

- 21 -

/5

b
\\

D

o~

15-410, F'05

Anatomy of a Hard Drive

Let's read in a sector from the disk

SRR

<
Py
read/write head “‘g’%‘ ‘;"
W
S

%

_29 .

15-410, F'05

Anatomy of a Hard Drive

Let's read in a sector from the disk

2
S

W
read/write hea "‘
d/write head \“‘Q‘
S

3
%
Y

- 23 .- 15-410, F'05

Anatomy of a Hard Drive

Let's read in a sector from the disk

S
{/

</

read/write head “z“ ‘;:
N

_ 24 - 15-410, F'05

Anatomy of a Hard Drive

Let's read in a sector from the disk

e
"

S0
S

l

S
5
{/

read/write head “z“
&

- 925 - 15-410, F'05

Disk Cylinder

Matching tracks across surfaces are collectively called
a cylinder

—

- 26 - 15-410, F'05

Disk Cylinder

Matching tracks form a cylinder.

_ 27 -

surface 0

surface 1
surface 2

surface 3
surface 4

surface 5

cylinder k

@% platter O

<

—— —

/—1_,\> platter 1

T == T per

B R ey

spindle

15-410, F'05

Cheap Access Within A Cylinder

Heads on single arm

= All heads always on same
cylinder

Switching heads is “cheap”
= Deactive head 3
= Activate head 4
= Wait for 1 st sector header

Optimal transfer rate

= Transfer all sectors on a
track

= Transfer all tracks on a
cylinder

= Then move elsewhere

- 28 -

15-410, F'05

Anatomy of a Hard Drive

On average, we will have to move the read/write head
over half the tracks

= The time to do this is the “average seek time”, and is ~10ms
for a 5400 rpm disk

We will also must wait half a rotation

= The time to do this is rotational latency, and on a 5400 rpm
drive is ~5.5ms

Seagate 7200.7, a modern 7200 RPM SATA drive
= Average seek 8.5 ms
= Average rotational latency 4.16 ms

- 29 - 15-410, F'05

Anatomy of a Hard Drive

Other factors influence overall disk access time
including

= Settle time, the time to stabilize the read/write head after a
seek

= Command overhead, the time for the disk to process a
command and start doing something

Minor compared to seek time and rotational latency

- 30 - 15-410, F'05

Anatomy of a Hard Drive

Total drive random access time is on the order of 10 to
20 milliseconds

= 50 ¥2-kilobyte transfers per second = 25 Kbyte/sec

= Oh man, disks are slow
= But wait! Disk transfer rates are quoted at tens of Mbytes/sec!

What can we, as operating system programmers, do
about this?

= Read more per seek (multi-sector transfers)
= Don't seek so randomly (“disk scheduling”)

- 31 - 15-410, F'05

Disk Scheduling Algorithms

The goal of a disk scheduling algorithm is to be nice to
the disk

We can help the disk by giving it requests that are
located close to each other

= This minimizes seek time, and possibly rotational latency

There exist a variety of ways to do this

- 32 - 15-410, F'05

Addressing Disks

What the OS knows about the disk?

= Interface type (IDE/SCSI), unit number, number of sectors

What happened to sectors, tracks, etc?
= Old disks were addressed by cylinder/head/sector (CHS)

= Modern disks are addressed by abstract sector number
= LBA = logical block addressing

Who uses sector numbers?
= File systems assign logical blocks to files

Terminology
= To disk people, “block” and “sector” are the same
= To file system people, a “block” is some number of sectors
- 33 - 15-410, F'05

Disk Addresses vs. Scheduling

Goal of OS disk-scheduling algorithm
= Maintain queue of requests

= When disk finishes one request, give it the “best” request
= E.g., whichever one is closest in terms of disk geometry

Goal of disk's logical addressing
= Hide messy details of which sectors are located where

Oh, well
= Older OS's tried to understand disk layout
= Modern OS's just assume nearby sector numbers are close
= Experimental OS's try to understand disk layout again
= Next few slides assume “modern”, not “old”/“experimental”

- 34 - 15-410, F'05

First Come First Served (FCFS)

Send requests to disk as they are generated by the OS
Trivial to implement — FIFO queue in device driver

Fair
= What could be more fair?
“Unacceptably high mean response time”
= File “abc” in sectors 1, 2, 3, ...

= File “def” in sectors 16384, 16385, 16386, ...
= Sequential reads: 1, 16384, 2, 16385, 3, 16386

“Fair, but cruel”
= “Don't try this at home”

- 35 - 15-410, F'05

Shortest Seek Time First (SSTF)

Maintain “queue” of disk requests

Serve the request nearest to the disk arm
= Estimate by subtracting block numbers

Great!
= Excellent throughput
= Very good average response time

Intolerable response time variance , however
Why?

- 30 -

15-410, F'05

SSTF

Blue are requests

Yellow is disk
Higher Block Numbers
I >

i1 |

Red is disk head
Green is completed requests

- 37 - 15-410, F'05

SSTF

Higher Block Numbers

|

|

|

- 38 -

15-410, F'05

SSTF

Higher Block Numbers

it

-390 -

SSTF

New Requests arrive...

Higher Block Numbers
| ——

1

_ 40 -

|

15-410, F'05

SSTF

Higher Block Numbers

I m

_41] -

SSTF

Higher Block Numbers

P 1m

_42 -

SSTF

Starves requests that are “far away” from the head

Higher Block Numbers
| ——

I I |

Request is starved

_43 - 15-410, F'05

What Went Wrong?

FCFS - “fair, but cruel”

= |gnores position of disk arm, very slow

SSTF - good throughput, very unfair
= Pays too much attention to requests near disk arm
= |gnores necessity of eventually scanning entire disk

“Scan entire disk” - now that's an idea!
= Start disk arm moving in one direction

= Serve requests as the arm moves past them
= No matter when they were queued

= When arm bangs into stop, reverse direction

- 44 -

15-410, F'05

SCAN — Queue Management

Doubly-linked ordered list of requests
= |nsert according to order

Bi-directional scanning
= Direction =+1or -1

Tell disk: “seek to cylinder X=current+direction”
Examine list for requests in cylinder X, serve them
If X ==0 or X == max

= direction = -direction
Else

= current =X

- 45 -

15-410, F'05

SCAN

Blue are requests

Yellow is disk
Higher Block Numbers
I >

i1 |

Red is disk head
Green is completed requests

- 46 - 15-410, F'05

SCAN

Higher Block Numbers

|

|

|

_47 -

15-410, F'05

SCAN

Higher Block Numbers

i 11

_ 48 -

SCAN

Higher Block Numbers

|

|

|

|

_ 49 -

SCAN

Higher Block Numbers

|

|

|

|

- 50 -

SCAN

ngher Block Numbeg

- 51 -

it 1111

New Request

|

SSTF would reverse here

15-410, F'05

SCAN

ngher Block Numbeg

_52 -

1t n

New Request

15-410, F'05

SCAN

Higher Block Numbers

|

|

|

|

- 53 -

SCAN

In SCAN, we continue to the end of the disk

Higher Block Numbers l
| ——

- 54 -

| [I I |

15-410, F'05

SCAN

Higher Block Numbers

|

|

|

i1

- 55 -

SCAN

Higher Block Numbers

|

|

|

i

- 56 -

SCAN

Higher Block Numbers

|

|

|

i

_57 -

SCAN

Higher Block Numbers

it 1111

- 58 -

SCAN

Higher Block Numbers

I

- 59 -

SCAN

Higher Block Numbers

i i1

- 60 -

SCAN

Higher Block Numbers

P11

- 61 -

SCAN

Higher Block Numbers

|

i1

|

- 62 -

SCAN

Higher Block Numbers

|

i

|

|

- 63 -

SCAN

Higher Block Numbers

|

i1

|

|

- 64 -

Evaluating SCAN

Mean response time
= Worse than SSTF, better than FCFS

Response time variance
= Better than SSTF

Unfair — why?

- 65 -

15-410, F'05

The LOOK Optimization

Just like SCAN - sweep back and forth through
cylinders

Don't wait for the “thud” to reverse the scan
= Reverse when there are no requests “ahead” of the arm

Improves mean response time, variance
Still unfair though

- 66 -

15-410, F'05

CSCAN - “Circular SCAN?”

Send requests in ascending cylinder order

When the last cylinder is reached, seek all the way
back to the first cylinder

Long seek is amortized across all accesses

= Key implementation detalil
= Seek timeis a non-linear function of seek distance
= One big seek is faster than N smaller seeks

Variance Is improved
Fair
Still missing something though...

_67 - 15-410, F'05

C-LOOK

CSCAN + LOOK
Scan in one direction, as in CSCAN

If there are no more requests in current direction go
back to furthest request

Very popular

- 68 -

15-410, F'05

C-LOOK

ngher Block Num:beé

i1

- 69 -

|

15-410, F'05

C-LOOK

Higher Block Numbers

|

|

|

- 70 -

C-LOOK

Higher Block Numbers

i 11

_ 71 -

C-LOOK

Higher Block Numbers

|

|

|

|

_72 -

C-LOOK

Higher Block Numbers

|

|

|

|

_73 -

C-LOOK

ngher Block Numbeg

1t n

New Request

_ 74 -

15-410, F'05

C-LOOK

Higher Block Numbers

|

|

|

|

_ 75 -

C-LOOK

In SCAN, we would continue
to right until the end of the disk

ngher Block Numbeg 1

it 11 n

- 76 - 15-410, F'05

C-LOOK

Higher Block Numbers

it 1111

_77 -

C-LOOK

Higher Block Numbers
[>

it 1 1

In LOOK, we would have read this request
(unfair extra service—so we'll skip it)

_78 - 15-410, F'05

C-LOOK

Higher Block Numbers

i 1

~ 79 -

C-LOOK

Higher Block Numbers

it

- 80 -

C-LOOK

Higher Block Numbers

|

|

|

|

- 81 -

C-LOOK

Higher Block Numbers

|

it 1

|

- 82 -

C-LOOK

Higher Block Numbers

1

- 83 -

C-LOOK

Higher Block Numbers

I m

-84 -

C-LOOK

Higher Block Numbers

|

[|

|

-85 -

C-LOOK

Higher Block Numbers

|

|

|

|

- 86 -

Algorithm Classification

SCAN vs. LOOK

= LOOK doesn't visit far edges of disk unless there are
requests

LOOK vs. C-LOOK

= C for “circular” - don't double-serve middle sectors

We are now excellent disk-arm schedulers
= Done, right?

- 87 -

15-410, F'05

Shortest Positioning Time First

Key observation
= Seek time takes a while

= But rotation time is comparable!
= Short seeks are faster than whole-disk rotations

= What matters is positioning time, not seek time

SPTF is like SSTF

= Serve “temporally nearest” sector next

Challenge
= Can't estimate by subtracting sector numbers
= Must know rotation position of disk in real time!

Performs better than SSTF, but still starves requests
- 88 - 15-410, F'05

Weighted Shortest Positioning
Time First (WSPTF)

SPTF plus fairness

Requests are “aged” to prevent starvation
= Compute “temporal distance” to each pending request
= Subtract off “age factor”

= Result: sometimes serve old request, not closest request
Various aging policies possible, many work fine
Excellent performance

Like SPTF, hard for OS to know disk status in real time

= On-disk schedulers can manage this, though...
= Some disks (SCSI, newer IDE) accept a request queue

= When complete, give OS both data and sector number
- 89 - 15-410, F'05

Head to Head

LOOK vs SCAN
= SCAN goes to the very end of the disk
= LOOK goes only as far as the farthest request

2 way vs Circular
= 2 way reverses directions at the extremes
= Circular starts back at the “starting” position

= 2 way is unfair
= Services requests at the center twice as often

Weighting
= “High Throughput” algorithms can starve requests
= Making them fair costs us in terms of performance
= Add aging to requests to prevent starvation

- 90 -

15-410, F'05

Lies Disks Tell

Disks re-order |/O requests
= You ask “read 37", “read 83", “read 2"

= Disk gives you 37, 2, 83
= Not so bad

Disks lie about writes
= You ask “read 37", “write 23", “read 2"

= Disk writes 23, gives you 2, 37
= Still not so bad

= You ask “write 23", “write 24", “write 1000”, “read 4-8", ...
= Disk writes 24, 23 (!!), gives you 4, 5, 6, 7, 8, writes 1000
= What if power fails before last write?
= What if power fails between first two writes?

-91 - 15-410, F'05

Lies Disks Tell

Disks lie about lies

= Special commands
= Flush all pending writes
» Think “my disk is 'modern™, think “disk barrier”
= Disable write cache
» Think “please don't be quite so modern”
= Some disks ignore the special commands
= “Flush all pending writes” [“Uh huh, sure, no problem”
= “Disable write cache” [“Uh huh, sure, no problem”

= Result
= Great performance on benchmarks!!!
= Really bizarre file system corruption after power failures

- 92 -

15-410, F'05

Conclusions

Disks are very slow
Disks are very complicated

FCFS is a very bad idea
= C-LOOK is ok in practice
= Disks probably do something like WSPTF internally

Disks lie
= Some are vicious

- 03 -

15-410, F'05

