
15-410, F'05- 1 -

Scheduling
Oct. 28, 2005

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L22a_Scheduling

15-410
“...Everything old is new again...”

15-410, F'05- 2 -

Synchronization

Project 3 suggestionsProject 3 suggestions
� Three regular meeting times per week

� Two hours or more at each meeting
� Begin by asking questions about each other's code

» Requires having read code before meeting
» Requires “quiet time” between check-ins and meeting

� Source control
� Frequent merges, not a single “big bang” at end

� Leave time at end for those multi-day bugs

15-410, F'05- 3 -

Synchronization

Checkpoint 3Checkpoint 3
� Monday, “end of third week”
� No cluster meeting – regular lecture
� Expect: code drop, milestone-estimation form

� Bboard post today/tomorrow
� Spending the time to really plan is worthwhile

15-410, F'05- 4 -

Outline

Chapter 5: SchedulingChapter 5: Scheduling

15-410, F'05- 5 -

CPU-I/O Cycle

ProcessProcess view: 2 states view: 2 states
� Running
� Waiting for I/O
� Life Cycle

� I/O (loading executable), CPU, I/O, CPU, .., CPU (exit())

SystemSystem view view
� Running, Waiting
� Runnable – not enough processors for you right now

Running Running ⇒⇒ waiting is mostly voluntary waiting is mostly voluntary
� How long do processes choose to run before waiting?

15-410, F'05- 6 -

CPU Burst Lengths

OverallOverall
� Exponential fall-off in CPU burst length

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

100

15-410, F'05- 7 -

CPU Burst Lengths

“CPU-bound” program“CPU-bound” program
� Batch job
� Long CPU bursts

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

100

15-410, F'05- 8 -

CPU Burst Lengths

“I/O-bound” program“I/O-bound” program
� Copy, Data acquisition, ...
� Tiny CPU bursts between system calls

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

100

15-410, F'05- 9 -

Preemptive?

Four opportunities to scheduleFour opportunities to schedule
� A running process waits (I/O, child, ...)
� A running process exits
� A waiting process becomes runnable (I/O done)
� Other interrupt (clock, page fault)

Multitasking typesMultitasking types
� Fully Preemptive: All four cause scheduling
� “Cooperative”: only first two

15-410, F'05- 10 -

Preemptive kernel ?

Preemptive multitaskingPreemptive multitasking
� All four cases cause context switch

Preemptive Preemptive kernelkernel
� All four cases cause context switch in kernel mode
� This is a goal of Project 3

� System calls: interrupt disabling only when really necessary
� Clock interrupts should suspend system call execution

» So fork() should appear atomic, but not execute that way

15-410, F'05- 11 -

CPU Scheduler

Invoked when CPU becomes idleInvoked when CPU becomes idle
� Current task blocks
� Clock interrupt

Select next taskSelect next task
� Quickly
� PCB's in: FIFO, priority queue, tree, ...

Switch (using “dispatcher”)Switch (using “dispatcher”)
� Your term may vary

15-410, F'05- 12 -

Dispatcher

Set down running taskSet down running task
� Save register state
� Update CPU usage information
� Store PCB in “run queue”

Pick up designated taskPick up designated task
� Activate new task's memory

� Protection, mapping
� Restore register state
� Transfer to user mode

15-410, F'05- 13 -

Scheduling Criteria

System administrator viewSystem administrator view
� Maximize/trade off

� CPU utilization (“busy-ness”)
� Throughput (“jobs per second”)

Process viewProcess view
� Minimize

� Turnaround time (everything)
� Waiting time (runnable but not running)

User view (interactive processes)User view (interactive processes)
� Minimize response time (input/output latency)

15-410, F'05- 14 -

Algorithms

Don't try these at homeDon't try these at home
� FCFS
� SJF
� Priority

ReasonableReasonable
� Round-Robin
� Multi-level (plus feedback)

Multiprocessor, real-timeMultiprocessor, real-time

15-410, F'05- 15 -

FCFS- First Come, First Served

Basic ideaBasic idea
� Run task until it relinquishes CPU
� When runnable, place at end of FIFO queue

Waiting time Waiting time veryvery dependent on mix dependent on mix

“Convoy effect”“Convoy effect”
� N tasks each make 1 I/O request, stall
� 1 task executes very long CPU burst
� Lather, rinse, repeat
� N “I/O-bound tasks” can't keep I/O device busy!

15-410, F'05- 16 -

SJF- Shortest Job First

Basic ideaBasic idea
� Choose task with shortest next CPU burst
� Will give up CPU soonest, be “nicest” to other tasks
� Provably “optimal”

� Minimizes average waiting time across tasks
� Practically impossible (oh, well)

� Could predict next burst length...
» Text presents exponential average
» Does not present evaluation (Why not? Hmm...)

15-410, F'05- 17 -

Priority

Basic ideaBasic idea
� Choose “most important” waiting task

� (Nomenclature: does “high priority” mean p=0 or p=255 ?)

Priority assignmentPriority assignment
� Static: fixed property (engineered?)
� Dynamic: function of task behavior

Big problem: Big problem: StarvationStarvation
� “Most important” task gets to run often
� “Least important “ task may never run
� Possible hack: priority “aging”

15-410, F'05- 18 -

Round-Robin

Basic ideaBasic idea
� Run each task for a fixed “time quantum”
� When quantum expires, append to FIFO queue

“Fair”“Fair”
� But not “provably optimal”

Choosing quantum lengthChoosing quantum length
� Infinite (until process does I/O) = FCFS
� Infinitesimal (1 instruction) = “Processor sharing”

� A technical term used by theory folks
� Balance “fairness” vs. context-switch costs

15-410, F'05- 19 -

True “Processor Sharing”

CDC Peripheral ProcessorsCDC Peripheral Processors

Memory latencyMemory latency
� Long , fixed constant
� Every instruction has a

memory operand

Solution: round robinSolution: round robin
� Quantum = 1 instruction

Memory

Processor Core

R
e

gi
st

e
r

S
et

R
eg

is
te

r
S

e
t

R
e

gi
st

e
r

S
et

R
e

gi
st

e
r

S
e

t

R
e

gi
st

e
r

S
et

15-410, F'05- 20 -

True “Processor Sharing”

CDC Peripheral ProcessorsCDC Peripheral Processors

Memory latencyMemory latency
� Long , fixed constant
� Every instruction has a

memory operand

Solution: round robinSolution: round robin
� Quantum = 1 instruction
� One “process” running
� N-1 “processes” waiting

Memory

Processor Core

R
e

gi
st

e
r

S
et

R
eg

is
te

r
S

e
t

R
e

gi
st

e
r

S
e

t

R
eg

is
te

r
S

e
t

R
e

gi
st

e
r

S
e

t

15-410, F'05- 21 -

True “Processor Sharing”

Each instructionEach instruction
� “Brief” computation
� One load xor one store

� Sleeps process N cycles

Steady stateSteady state
� Run when ready
� Ready when it's your turn

Memory

Processor Core

R
e

gi
st

e
r

S
et

R
eg

is
te

r
S

e
t

R
e

gi
st

e
r

S
e

t

R
eg

is
te

r
S

e
t

R
e

gi
st

e
r

S
e

t

15-410, F'05- 22 -

Everything Old Is New Again

Intel “hyperthreading”Intel “hyperthreading”
� N register sets
� M functional units
� Switch on long-running

operations
� Sharing less regular
� Sharing illusion more

lumpy
� Good for some application

mixes

Memory

Processor Core

R
e

gi
st

e
r

S
et

R
eg

is
te

r
S

e
t

R
e

gi
st

e
r

S
e

t

R
eg

is
te

r
S

e
t

R
e

gi
st

e
r

S
e

t

15-410, F'05- 23 -

Multi-level Queue

N independent process queuesN independent process queues
� One per priority
� Algorithm per-queue

Priority 0 P1 P7

Priority 1 P2 P9 P3

Batch P0 P4

R. Robin

R. Robin

FCFS

15-410, F'05- 24 -

Multi-level Queue

Inter-queue schedulingInter-queue scheduling
� Strict priority

� Pri 0 runs before Pri 1, Pri 1 runs before batch – every time
� Time slicing (e.g., weighted round-robin)

� Pri 0 gets 2 slices
� Pri 1 gets 1 slice
� Batch gets 1 slice

15-410, F'05- 25 -

Multi-level Feedback Queue

N queues, different quantaN queues, different quanta

Block/sleep before quantum expires?Block/sleep before quantum expires?
� Added to end of your queue

Exhaust your quantum?Exhaust your quantum?
� Demoted to slower queue

� Lower priority, typically longer quantum

Can you be promoted back up?Can you be promoted back up?
� Maybe I/O promotes you
� Maybe you “age” upward

Popular “time-sharing” schedulerPopular “time-sharing” scheduler

15-410, F'05- 26 -

Multiprocessor Scheduling

Common assumptionsCommon assumptions
� Homogeneous processors (same speed)
� Uniform memory access (UMA)

Load sharing / Load balancingLoad sharing / Load balancing
� Single global ready queue – no false idleness

Processor AffinityProcessor Affinity
� Some processor may be more desirable or necessary

» Special I/O device
» Fast thread switch

15-410, F'05- 27 -

Multiprocessor Scheduling -
“SMP”
Asymmetric multiprocessingAsymmetric multiprocessing

� One processor is “special”
� Executes all kernel-mode instructions
� Schedules other processors

� “Special” aka “bottleneck”

Symmetric multiprocessing - “SMP”Symmetric multiprocessing - “SMP”
� “Gold standard”
� Tricky

15-410, F'05- 28 -

Real-time Scheduling

HardHard real-time real-time
� System must always meet performance goals

� Or it's broken (think: avionics)
� Designers must describe task requirements

� Worst-case execution time of instruction sequences
� “Prove” system response time

� Argument or automatic verifier
� Cannot use indeterminate-time technologies

� Disks!

15-410, F'05- 29 -

Real-time Scheduling

Soft real-timeSoft real-time
� “Occasional” deadline failures tolerable

� CNN video clip on PC
� DVD playback on PC

� Much cheaper than hard real-time
� Real-time extension to timesharing OS

» POSIX real-time extensions for Unix
� Can estimate (vs. prove) task needs

� Priority scheduler
� Preemptible kernel implementation

15-410, F'05- 30 -

Scheduler Evaluation
Approaches
“Deterministic modeling”“Deterministic modeling”

� aka “hand execution”

Queueing theoryQueueing theory
� Math gets big fast
� Math sensitive to assumptions

» May be unrealistic (aka “wrong”)

SimulationSimulation
� Workload model or trace-driven
� GIGO hazard (either way)

15-410, F'05- 31 -

Summary

Round-robin is ok for simple casesRound-robin is ok for simple cases
� Certainly 80% of the conceptual weight
� Certainly good enough for P3

� Speaking of P3...
» Understand preemption, don't evade it

“Real” systems“Real” systems
� Some multi-level feedback
� Probably some soft real-time

