15-410

“The only way to win is not to play.”

Virtual Memory

Oct. 14, 2005

Dave Eckhardt
Bruce Maggs

L19 VM3

3

15-410,F'05




Synchronization

First Project 3 checkpoint
= Monday during class time

= Meet in Wean 5203
= If your group humber ends with
» 0-2 try to arrive 5 minutes early
» 3-5 arrive at 10:42:30
» 6-9 arrive at 10:59:27

= Preparation
= Your kernel should be in mygroup/p3ck1
= |t should load one program, enter user space, gettid()
» ldeally Iprintf() the result of gettid()
= We will ask you to load & run a test program we will name

= Explain which parts are “real”, which are “demo quality”
-2 - 15-410,F'05



Last Time

Partial memory residence (demand paging) in action

Process address space
= Logical: list of regions
= Hardware: list of pages

Fault handler is complicated
= Page-in, speed hacks (copy-on-write, zero-fill), ...
= Shared memory via mmap()

_3. 15-410,F'05



Outline

Page-replacement policies
= The eviction problem
= Sample policies (theory and practice)
= Page buffering
= Frame Allocation (process page quotas)

Definition & use of
= Dirty bit
= Reference bit

Virtual-memory usage optimizations
The mysterious TLB

_4 - 15-410,F'05



Page Replacement/Page Eviction

Process always want more memory frames
= Explicit deallocation is rare
= Page faults are implicit allocations

System inevitably runs out of frames

Solution
= Pick a frame, store contents to disk

= Transfer ownership to hew process
= Service fault using this frame

_5. 15-410,F'05



Pick a Frame

Two-level approach
= Determine # frames each process “deserves”

= “Process” chooses which frame is least-valuable
= Most OS's: kernel actually does the choosing

System-wide approach
= Determine globally-least-useful frame

15-410,F'05



Store Contents to Disk

Where does it belong?

= Allocate backing store for each page
= What if we run out?

Must we really store it?

= Read-only code/data: no!

= Can re-fetch from executable

= Saves paging space & disk-write delay

= But file-system read() may be slower than paging-disk read
= Not modified since last page-in: no!

= Hardware typically provides “page-dirty” bit in PTE

= Cheap to “store” a page with dirty==0

_7 15-410,F'05



Page Eviction Policies

Don't try these at home
= FIFO
= Optimal
= LRU

Practical
= LRU approximation

Current Research
= ARC (Adaptive Replacement Cache)
= CAR (Clock with Adaptive Replacement)
= CART (CAR with Temporal Filtering)

15-410,F'05



Page Eviction Policies

Don't try these at home
= FIFO
= Optimal
= LRU

Practical
= LRU approximation

Current Research

ARC (Adaptive Replacement Cache)

CAR (Clock with Adaptive Replacement)

CART (CAR with Temporal Filtering)
CARTHAGE (CART with Hilarious AppendaGE)

15-410,F'05



FIFO Page Replacement

Concept
= Queue of all pages (virtual)
= Page added to tail of queue when first given a frame
= Always evict oldest page (head of queue)

Evaluation
= Fast to “pick a page”
= Stupid
= Will indeed evict old unused startup-code page

= But guaranteed to eventually evict process's favorite page
too!

_10 - 15-410,F'05



Optimal Page Replacement

Concept

= Evict whichever page will be referenced /atest
= “Buy the most time” until next page fault

Evaluation
= Requires perfect prediction of program execution
= Impossible to implement

So?
= Used as upper bound in simulation studies

“11 - 15-410,F'05



LRU Page Replacement

Concept
= Evict Least-Recently-Used page

= “Past performance may not predict future results”
= ...but it's an important hint!

Evaluation
= Would probably be reasonably accurate
= LRU is computable without a fortune teller

= Bookkeeping very expensive
= (right?)

_12- 15-410,F'05



LRU Page Replacement

Concept
= Evict Least-Recently-Used page

= “Past performance may not predict future results”
= ...but it's an important hint!

Evaluation
= Would probably be reasonably accurate
= LRU is computable without a fortune teller

= Bookkeeping very expensive
= Hardware must sequence-number every page reference
= Evictor must scan every page's sequence number

_ 13- 15-410,F'05



Approximating LRU

Hybrid hardware/software approach
= 1 reference bit per page table entry
OS sets reference = 0 for all pages
Hardware sets reference=1 when PTE is used in lookup

OS periodically scans
= (reference == 1) = “recently used”
Result:

= Hardware sloppily partitions memory into “recent” vs. “old”
= Software periodically samples, makes decisions

_14 - 15-410,F'05



Approximating LRU

“Second-chance” algorithm
= Use stupid FIFO queue to choose victim candidate page
= reference == 0?
= not “recently” used, evict page, steal its frame

= reference ==1?
= “somewhat-recently used” - don't evict page this time
= append page to rear of queue
= set reference =0
» Process must use page again “soon” for it to be skipped

Approximation

= Observe that queue is randomly sorted
= We are evicting not-recently-used, not /easi-recently-used

_15- 15-410,F'05



Approximating LRU

“Clock” algorithm

= Observe: “Page queue” requires linked list
= Extra memory traffic to update pointers

= Observe: Page queue's order is essentially random
= Doesn't add anything to accuracy

= Revision
= Don't have a queue of pages
= Just treat memory as a circular array

_ 16 -

15-410,F'05



Clock Algorithm

static int nextpage = O;
boolean reference[NPAGES];

int choose victim() {

while (reference[nextpage]) ({
reference[nextpage] = false;

nextpage = (nextpage+l)
}

return (nextpage);

_17 -

o

©

NPAGES;

15-410,F'05



“Page Buffering”

Problem

= Don't want to evict pages only after a fault needs a frame
= Must wait for disk write before launching disk read...slow...

“Assume a blank page...”
= Page fault handler can be much faster

“page-out daemon”

= Scans system for dirty pages
= Write to disk
= Clear dirty bit
= Page can be instantly evicted later

= When to scan, how many to store? Indeed...

_ 18 -

15-410,F'05



Frame Allocation

How many frames should a process have?

Minimum allocation

= Examine worst-case instruction
= Can multi-byte instruction cross page boundary?
= Can memory parameter cross page boundary?
= How many memory parameters?
= Indirect pointers?

- 19 -

15-410,F'05



“Fair” Frame Allocation

Equal allocation

= Every process gets same number of frames
= “Fair” - in a sense
= Probably wasteful

Proportional allocation

= Every process gets same percentage of residence
= (Everybody 83% resident, larger processes get more frames)
= “Fair” - in a different sense
= Probably the right approach
» Theoretically, encourages greediness

220 - 15-410,F'05



Thrashing

Problem

= Process needs N frames...
= Repeatedly rendering image to video memory
= Must be able to have all “world data” resident 20x/second

= ...but OS provides N-1, N/2, etc.

Result
= Every page OS evicts generates “immediate” fault

= More time spent paging than executing

= Paging disk constantly busy
= Denial of “paging service” to other processes

= Widespread unhappiness

291 - 15-410,F'05



“Working-Set” Allocation Model

Approach

= Determine necessary # frames for each process
= “Working set” - size of frame set you need to get work done

= If unavailable, swap entire process out
= (later, swap some other process entirely out)

How to measure working set?
= Periodically scan all reference bits of process’'s pages
= Combine multiple scans (see text)

Evaluation
= Expensive
= Can we approximate it?
_2D . 15-410,F'05



Page-Fault Frequency Approach

Approach
= Recall, “thrashing” == “excessive” paging
= Adjust per-process frame quotas to balance fault rates
= System-wide “average page-fault rate” (10 faults/second)

= Process A fault rate “too low”: reduce frame quota
= Process A fault rate “too high”: increase frame quota

What if quota increase doesn't help?

= If giving you some more frames didn't help, maybe you
need a /ot more frames than you have...

= Swap you out entirely for a while

_23 . 15-410,F'05



Program Optimizations

Is paging an “OS problem”?
= Can a programmer reduce working-set size?

Locality depends on data structures

= Arrays encourage sequential accesses
= Many references to same page
= Predictable access to next page

= Random pointer data structures scatter references

Compiler & linker can help too
= Don't split a routine across two pages
= Place helper functions on same page as main routine

Effects can be dramatic
~ 24 - 15-410,F'05



Double Trouble? Triple Trouble?

Program requests memory access

Processor makes iwo memory accesses!

Split address into page number, intra-page offset
Add to page table base register

Fetch page table entry (PTE) from memory

Add frame address, intra-page offset

Fetch data from memory

Can be worse than that...

= x86 Page-Directory/Page-Table
= Three physical accesses per virtual access!

_925_ 15-410,F'05



Translation Lookaside Buffer
(TLB)

Problem
= Cannot afford double/triple memory latency

Observation - “locality of reference”
= Program often accesses “nearby” memory
= Next instruction often on same page as current instruction
= Next byte of string often on same page as current byte
= (“Array good, linked list bad™)

Solution

= Page-map hardware caches virtual-to-physical mappings
= Small, fast on-chip memory

226 - 15-410,F'05



Simplest Possible TLB

Approach
= Remember the most-recent virtual-to-physical translation
= (from, e.g., Page Directory + Page Table)

= See if next memory access is to same page
= If so, skip PD/PT memory traffic; use same frame
= 3X speedup, cost is two 20-bit registers
» “Great work if you can get it”

_27 - 15-410,F'05



Simplest Possible TLB

Page
Directory

Page
Tables

_78 - 15-410,F'05



Simplest Possible TLB

Page
Directory

Page
Tables

_09 _ 15-410,F'05



Simplest Possible TLB

Page
Directory

Page
Tables

- 30 - 15-410,F'05



TLB “Hit”

Page
Directory

Page
Tables

23] - 15-410,F'05



TLB “Miss”™

_32_

Page
Directory

Page
Tables

15-410,F'05



TLB “Refill”

Page
Directory

Page
Tables

233 15-410,F'05



Simplest Possible TLB

Can you think of a “pathological” instruction?
= What would it take to “break™ a 1-entry TLB?

How many TLB entries do we need, anyway?

_34 -

15-410,F'05



TLB vs. Context Switch

After we've been running a while...
= ...the TLB is “hot” - full of page—=frame translations

Interrupt!
= Some device is done...
= ...Should switch to some other task...

= ...what are the parts of context switch, again?

= General-purpose registers
= 9

_135.-

15-410,F'05



TLB vs. Context Switch

After we've been running a while...
= ...the TLB is “hot” - full of page—=frame translations

Interrupt!
= Some device is done...
= ...Should switch to some other task...

= ...what are the parts of context switch, again?
= General-purpose registers

= Page Table Base Register (x86 calls it ...?)
= .2

_36 - 15-410,F'05



TLB vs. Context Switch

After we've been running a while...
= ...the TLB is “hot” - full of page—=frame translations

Interrupt!
= Some device is done...
= ...Should switch to some other task...

= ...what are the parts of context switch, again?
= General-purpose registers
= Page Table Base Register (x86 calls it ...?)
= Entire contents of TLB!!
» (why?)

237 - 15-410,F'05



x86 TLB Flush

1. Declare new page directory (set %cr3)

= Clears every entry in TLB (whoosh!)
= Well, doesn't clear “global” pages...who would want this?

2. INVLPG instruction

= |Invalidates TLB entry of one specific page
= |s that more efficient or less?

_38 - 15-410,F'05



x86 Type Theory — Final Version
Instruction = segment selector
= [PUSHL specifies selector in %SS]

Process = (selector = (base,limit) )
= [Global,Local Descriptor Tables]

Segment base, address = linear address
TLB: linear address = physical address or...

Process = (linear address high = page table)
= [Page Directory Base Register, page directory indexing]

Page Table: linear address middle = frame address

Memory: frame address, offset = ...

-39 . 15-410,F'05



Is there another way?

That seems really complicated

= |s that hardware monster really optimal for every OS and
program mix?

= “The only way to win is not to play?”

Is there another way?
= Could we have no page tables?
= How would the hardware map virtual to physical???

_40 - 15-410,F'05



Software-loaded TLBs

Reasoning
= We need a TLB “for performance reasons”

= OS defines each process’'s memory structure
= Which memory regions, permissions

= Hardware page-mapping unit imposes its own ideas
= Why impose a semantic middle-man?

Approach
= TLB contains small number of mappings
= OS knows the rest
= TLB miss generates special trap
= OS quickly fills in correct v=p mapping

_41] - 15-410,F'05



Software TLB features

Mapping entries can be computed many ways

= Imagine a system with one process memory size
= TLB miss becomes a matter of arithmetic

Mapping entries can be “locked” in TLB
= Good idea to lock the TLB-miss handler's TLB entry...
= Great for real-time systems

Further reading
= http://yarchive.net/comp/software_tib.html

Software TLBs
= PowerPC 603, 400-series (but NOT 7xx/9xx)

_40 15-410,F'05



TLB vs. Project 3

x86 has a nice, automatic TLB
= Hardware page-mapper fills it for you
= Activating new page directory flushes TLB automatically
= What could be easier?

It's not totally automatic
= Something “natural” in your kernel may confuse it...

TLB debugging in Simics
= logical-to-physical (I2p) command
= tlb0.info, tIb0.status
= More bits “trying to tell you something”

= [INVLPG issues with Simics 1. Simics 2?]
_43 - 15-410,F'05



Summary

Page-replacement policies
= The eviction problem
= Sample policies
= For real: LRU approximation with hardware support
= Page buffering
= Frame Allocation (process page quotas)

Definition & use of
= Dirty bit
= Reference bit

Virtual-memory usage optimizations

The no-longer-mysterious TLB

_44 - 15-410,F'05



