15-410

“..Goals: Time Travel, Parallel Universes...”

PRCS
Sep. 23, 2005

Dave Eckhardt
Bruce Maggs
Zach Anderson (S '03)

-1 - L11 PRCS 15-410, F'05




Outline

Motivation

Repository vs. Working Directory
Conflicts and Merging

Branching

PRCS - Project Revision Control System

15-410, F'05



Goals

Working together should be easy

Time travel
- Useful for challenging patents

- Very useful for reverting from a
sleepless hack session

Parallel universes
- Experimental universes
- Product-support universes

_3. 15-410, F'05




Goal: Shared Workspace

Reduce development latency via parallelism
- [But: Brooks, Mythical Man-Month]

Alice

awesome.C

Bob

Charlie Devon

15-410, F'05




Goal: Time Travel

Retrieving old versions should be easy.

Once Upon A Tine...
Alice: What happened to the code? It doesn’t work.
Charlie: Oh, | made some changes. My code is 1337!

Alice: Rawr! | want the code from last Tuesday!

_5. 15-410, F'05




Goal: Parallel Universes

Safe process for implementing new features.
- Develop bell in one universe
- Develop whistle in another
- Don't inflict B's core dumps on W

- Eventually produce bell-and-whistle
release

_6- 15-410, F'05




How?

Keep a global repository for the project.

_7 15-410, F'05




The Repository

Version
- Contents of some files at a particular point in
time
- aka “Snapshot”

Project
- A “sequence” of versions
* (not really)

Repository
- Directory where projects are stored

- 15-410, F'05




The Repository

Stored in group-accessible location
- Old way: file system
- Modern way: “repository server”
Versions in repository visible group-wide
- Whoever has read access
- “Commit access” often separate

_0. 15-410, F'05




How?

Keep a global repository for the project.
Each user keeps a working directory.

- 10 -

15-410, F'05




The Working Directory

Many names (“sandbox™)

Where revisions happen

Typically belongs to one user
Versions are checked out to here

New versions are checked in from here

-11 -

15-410, F'05




How?

Keep a global repository for the project.
Each user keeps a working directory.

Concepts of checking out, and checking in

_12-

15-410, F'05




Checking Out. Checking In.

Checking out
- A version is copied from the repository
* Typically “Check out the latest”
* Or: “Revision 3.1.4”, “Yesterday noon”

Work

- Edit, add, remove, rename files
Checking in
- Working directory = repository atomically

- Result: new version
- 13 - 15-410, F'05




Checking Out. Checking In.

Repository Working Directory

@)
@)

-m’-

_14 - 15-410, F'05




Checking Out. Checking In.

Repository Working Directory

(@)

o

| mutate

- 15 - 15-410, F'05




Checking Out. Checking In.

Repository Working Directory

(@)

o

-‘W-

@)
@)
©)

- 16 - 15-410, F'05




How?

Keep a global repository for the project.
Each user keeps a working directory.

Concepts of checking out, and checking in

Mechanisms for merging

_17 -

15-410, F'05




Conflicts and Merging

Two people check out.
- Both modify foo.c

Each wants to check in a new version.
- Whose is the correct new version?

_ 18- 15-410, F'05




Conflicts and Merging

Conflict
- Independent changes which “overlap”

- Textual overlap detected by revision
control

- Semantic conflict cannot be

Merge displays conflicting updates per file

Pick which code goes into the new version
- A, B, NOTA

_ o Picture now, example later

15-410, F'05




Alice Begins Work

Alice Repository Bob

B
-

220 - 15-410, F'05




Bob Arrives, Checks Out

Alice Repository Bob

e —
-

291 - 15-410, F'05




Alice Commits, Bob Has Coffee

Alice Repository Bob

-
i

_09 15-410, F'05




Bob Fixes Something Too
Alice Repository

_23 . 15-410, F'05




Wrong Outcome

Alice Repository

_24 -

Bob

-
e

15-410, F'05




“Arguably Less Wrong”

Alice Repository

-H
i

_925_ 15-410, F'05




Merge, Bob, Merge!

Alice Repository Bob

_ 96 -

15-410, F'05




Committing Genuine Progress
Alice Repository

_27 - 15-410, F'05




How?

Keep a global repository for the project.
Each user keeps a working directory.

Concepts of checking out, and checking in

Mechanisms for merging
Mechanisms for branching

_08 -

15-410, F'05




Branching

A branch is a sequence of versions
- (not really...)

Changes on one branch don't affect others
Project may contain many branches
Why branch?

- Implement a new “major” feature

- Begin an independent sequence of
development

_09 _ 15-410, F'05



Branching

@)
@)
o

v0.3 branch vl.1l

v0.37 v1.42

oS |
o N | merge

~ o |

~av

v1.43

-30 -

The actual branching
and merging take
place 1n a particular
user's working
directory, but this 1s
what such a sequence
would look like to
the repository.

15-410, F'05




_31 -

Branch Life Cycle

“The Trunk”
- “Release 1.0”, “Release 2.0”, ...

Release 1.0 maintenance branch
-1.0.1,1.0.2, ...

- Bug-fix updates as long as 1.0 has users

Internal development branches
-111,11.2, ...

- Probably 1.1.1.client, 1.1.1.server

15-410, F'05



Branch Life Cycle

Successful development branch
- Merged back to parent
- No further versions

Unsuccessful development branch
- Some changes pulled out?
- No further versions

Maintenance branch
- “End of Life”’: No further versions
- 32

15-410, F'05



Are Branches Deleted?

Consider the “data structure”
- Revisions of each file (coded as deltas)
- Revisions of the directory tree

Branch delete
- Complicated data structure update
* [Not a well-tested code path]
- Generally a bad idea
* History could a/ways be useful later...

233 15-410, F'05



Source Control Opinions

CVS
- very widely used SubVersion
- mature, lots of features - lots of potential
- default behavior often - not ready yet?
wrong PerForce
OpenCM - commercial
- security-conscious design - reasonable design
- not widely used - works well
BitKeeper - big server
- ee-by-Li Arch, git
- “Special” license - good plan
restrictions — immature?

_34 - 15-410, F'05




Dave's Raves

CvS

- Commit: atomic if you are careful

- Named snapshots: if you are careful

- Branching: works if you are careful

— Core operations require care & expertise!!!

Many commercial products
- Require full-time person, huge machine
- Punitive click-click-click GUI

- Poor understanding of data structure

35 requirements 15410, F05




Recommendation for 15-410

You can use CVS if you're used to it

PRCS, Project Revision Control System
- Small “conceptual throw weight”
- Easy to use, state is visible (single text file)
- No bells & whistles

Setting to learn revision control concepis
- Quick start when joining research project/job
* (They will probably not be using PRCS)

_36 - 15-410, F'05




Getting Started

Add 410 programs to your path (.bashrc):

S export
PATH=/afs/cs.cmu.edu/academic/class/1541
0-f05/bin:SPATH

Set environment variables (also .bashrc):

S export
PRCS REPOSITORY=/afs/cs.cmu.edu/academic
/class/15410-£05-users/group-
99 /REPOSITORY

$ export PRCS_LOGQUERY=1

237 - 15-410, F'05




Creating A New Project

In a working directory:
$ prcs checkout P

- P is the name of the project

Creates a file: P.prj

_38 -

15-410, F'05




The Project File

.. —%- pros —%- Description of project.
(Created-By-Prcs-Version 1 3 0

(Project-Description "")

(Project-Version P 0 0)

(Parent-Version —*— —*— —%-—) Make notes about

(Version-Log "Empty project.")
(New-Version-Log "") \ changes before

(Checkin-Time "Wed, 15 Jan 2003 21:38:47 -0500") Checking 1n a hew
version

(Checkin-Login zra)
(Populate—-Ignore ())

(Project—-Keywords)
(Files
;; This is a comment. Fill in files here.

;; For example: (prcs/checkout.cc ())
/ “k\\\\\\\\~

(Merge—-Parents)
(New—Merge—Parents)

-39

List of files

15-410, F'05




Using the Project File

Adding Files
$ prcs populate P filel file2 .. fileN

- To add every file in a directory
$ prcs populate P

e Rarely what you want

Removing, renaming files
- See handout

_40 - 15-410, F'05




Checking In

Checking in
$ prcs checkin P

- Check-in will fail if there are conflicts.
- Hey, we forgot to talk about conflicts!

_41] - 15-410, F'05




Conflicts and Merging

Suppose this file is in the repository for
project P:

#include <stdlib.h>
#include <stdio.h>

int main (void)

{
printf ("Hello World!\n");
return O;

_4D -

15-410, F'05




Conflicts and Merging

Suppose Alice and Charlie check out this
version, and make changes:

Alice's Version

#include <stdlib.h>
#include <stdio.h>

#define SUPER 0

int main(void)
{
/* prints "Hello World"
to stdout */
printf ("Hello World!\n");
return SUPER;

_43 -

Charlie's Version

#include <stdlib.h>
#include <stdio.h>

int main (void)
{
/* this, like, says
hello, and stuff */
printf ("Hello Hercules!\n");
return 42;

}

15-410, F'05




Conflicts and Merging

Suppose Alice checks in first.

$ prcs checkin

Now Charlie must perform a merge

$ prcs checkin = will fail
$ prcs merge

- Default merge option performs a CVS-like

merge.
$ prcs checkin = should work now

_44 -

15-410, F'05




Conflicts and Merging

The file after a merge

#include <stdlib.h>
#include <stdio.h>

#define SUPER 0

int main (void)

{

<<< 0.2 (w) /hello.c Wed, 19 Feb 2003 21:26:36 -0500 zra (P/0_hello.c 1.2 644)

/* this, like, says hello, and stuff */
printf ("Hello Hercules!");
return 42;

/* prints "Hello World" to stdout */
printf ("Hello World!");
return SUPER;

>>> 0.3/hello.c Wed, 19 Feb 2003 21:36:53 -0500 zra (P/0_hello.c 1.3 644)

Ys -

15-410, F'05




Conflicts and Merging

Pick/create the desired version
- Check that into the repository.

- 46 - 15-410, F'05




Branching

To create the first version of a new branch:

$ prcs checkin -rExperimental VM
Kern.prj

To merge with branch X version 37:

$ prcs merge -rX.37 Kern.prj

_47 - 15-410, F'05




Information

To get a version summary about P:

$ prcs info P

- with version logs:
$ prcs info -1 P

_48 -

15-410, F'05




Suggestions

Develop a convention for naming revisions
- Date
- Type of revision(bug-fix, commenting, etc.)
- Short phrase

When to branch?
- Bug fixing?
* Check out, fix, check in to same branch
- Trying COW fork since regular fork works?
* Branching probably a good idea.

_49 - 15-410, F'05




Summary

We can now:
- Create projects
- Check source in/out
- Merge, and
- Branch

See PRCS documentation
- Ours, official — on Projects web page
- Complete list of commands
- Useful options for each command.

- 50 - 15-410, F'05




