15-410

“An Experience Like No Other”

Stack Discipline
Jan. 14, 2004

Bruce Maggs
Dave Eckhardt
Geoff Langdale
Slides originally stolen from 15-213

15-213, S’03

Outline

Topics

= Process memory model
IA32 stack organization
Register saving conventions
Before & after main ()
Project 0

o 15-213, S'03

Private Address Spaces

Each process has its own private address space.

Oxffffffff

0xc0000000

0x40000000

0x08048000
0

kernel virtual memory
(code, data, heap, stack)

user stack
(created at runtime)

v
A

memory mapped region for
shared libraries

?

run-time heap
(managed by malloc)

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

unused

memory
invisible to
user code

< %esp (stack pointer)

<4 prk

\ loaded from the
executable file

15-213, S’03

FF

CO
BF
Upper
2 hex
digits of
address
80

Red Hat E

V. 6.2
~1920MB
memory
limit 40
3F

08

Stack

Heap

Shared
Libraries

Heap

Data

Text

Linux Memory Layout

Stack
- Runtime stack (8MB limit by default)

Heap
- Dynamically allocated storage
= When call malloc, calloc, new

Shared/Dynamic Libraries aka Shared Objects
- Library routines (e.g., printf, malloc)
- Linked into object code when first executed
- Windows has “DLLs” (semantic differences)

Data, BSS
- Statically allocated data (BSS starts all-zero)
= e.d., arrays & variables declared in code

Text, RODATA
 Text - Executable machine instructions
- RODATA - Read-only (e.g., “const”)

- String literals 15.213. 503

BF

30
TF

40
3F

08
00

Linux Memory Allocation

Initially

—alack

v

Data

Text

BF

30
TF

40
3F

08
00

Linked

Stack

Libraries

Data

Text

BF

40
3F

08
00

Some
Heap

Stack

v

Libraries

Data

Text

BF

30
TF

40
3F

08
00

More
Heap

Stack

Libraries

S

Data
Text

15-213, S’03

IA32 Stack

= Region of memory managed

with stack discipline

= Grows toward lower
addresses
= Register $esp indicates
lowest stack address
= address of top element

Stack “Bottom”

/o

Stack
Pointer

Increasing
Addresses

Stack Grows
Down

sesp —»

AN

Stack “Top”

15-213, S’03

JA32 Stack Pushing

Pushing Stack “Bottom”
= pushl Src / N
= Fetch operand at Src
Increasing
= Decrement % 4
ecrement tesp by Addre¢sses
= Write operand at address

given by %esp

Stack Grows

Down
Stack

Pointer
sesp —Bb

™~

Stack “Top”
7 15-213, S'03

IA32 Stack Popping

Popping Stack “Bottom”
= popl Dest / N
= Read operand at address
given by %esp Increfising
Addre¢sses
= |Increment %esp by 4

= Write to Dest

S_tack Stack Grows
Pointer D
sesp 4T n
T+4 :
Stack “Top”

8 15-213, S'03

Stack Operation Examples

0x110
0x10c
0x108

%$eax
$edx

sesp

123

213

555

0x108

0x110
0x10c
0x108
0x104

%$eax
$edx

sesp

pushl %eax

123

213

213

555

0x104

0x110
0x10c
0x108
0x104

%$eax
$edx

sesp

popl %edx

123

213

213

213

0x108

15-213, S’03

Procedure Control Flow

= Use stack to support procedure call and return

Procedure call:
= call label Push return address on stack; Jump to /abel

Return address value
= Address of instruction after call

= Example from disassembly
= 804854e: e8 3d 06 00 00 call 8048b90 <main>

= 8048553: 50 pushl %eax
= Return address = 0x8048553

Procedure return:
= ret Pop address from stack; Jump to address

—10- 15-213, S’03

Procedure Call Example

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

call 8048b90

0x110 0x110
0x10c 0x10c
0x108 123 0x108 123

0x104 |0x8048553

sesp 0x108 sesp 0x104

%eip |0x804854e %elip |0x8048b90

%$eip Is program counter

—11— 15-213, S’03

—{o—

Procedure Return Example

8048591: 3

0x110
0x10c
0x108
0x104

sesp

seip

ret

123

0x8048553

0x104

0x8048591

%$eip Is program counter

0x110
0x10c
0x108

sesp

seip

ret

123

0x8048553

0x108

0x8048553

15-213, S’03

Stack-Based Languages

Languages that Support Recursion
= e.g., C, Pascal, Java
= Code must be “Reentrant”
= Multiple simultaneous instantiations of single procedure

= Need some place to store state of each instantiation
= Arguments

= Local variables
= Return pointer (maybe)
= Weird things (static links, exception handling, ...)

Stack Discipline

= State for given procedure needed for limited time
= From time of call to time of return

= Callee returns before caller does

Stack Allocated in Frames

= state for single procedure instantiation

—13— 15-213, S’03

Call Chain Example

Code Structure
yoo (...)
{
;ho O who (...)
. {
\) amI () ;
amI () ;
}

- Procedure amI ()

recursive

—14—

Call Chain

15-213, S'03

Stack Frames

Contents

= Local variables b
= Return information e
= Temporary space
amI
Management
= Space allocated when enter
procedure Frame
= “Set-up” code Pointer
= Deallocated when return sebp
proc
= “Finish” code Stack
. Pointer
Pointers %esp \ Stack
- Stack pointer $esp indicates Top
stack top
= Frame pointer $ebp indicates
—15— 15-213, S’03

start of current frame

|JA32/Linux Stack Frame

Current Stack Frame (“Top”
to Bottom)

= Parameters for function
about to call
= “Argument build”

= Local variables
= If can't keep in registers

= Saved register context
= Old frame pointer

Caller Stack Frame

= Return address
= Pushed by call instruction

= Arguments for this call

—16—

-
Ca"er <
Frame
Arguments
Frame Pointer \ |Return Addr
(3ebp) —»| Old %ebp
Saved
Registers
+
Local
Variables
Argument
Stack Pointer guil d
($esp) >

15-213, S’03

swap

Calling swap from call_swap

int zipl = 15213;

call_ swap:
int zip2 = 91125;

pushl $zip2 # Global Var
pushl $zipl # Global Var
call swap

void call_swap ()

{
swap (&zipl, &zip2);

}
) Resulting

{

int £t0 = *xp; §zip2

int t1 = *yp; szipl

*xp = tl;

*yp = tO; Rtn adr [¢— %esp
}

17— 15-213, S’03

swap

void swap (int *xp,
{
int t0 = *xp;
int tl1 = *yp;
*xp = t1;
*yp = tO0;

int *yp)

—18—

swap:

pushl %ebp

movl

pushl %ebx

movl
movl
movl
movl
movl
movl

movl
movl

popl
ret

sesp, $ebp Set
Up

12 (%ebp) , $ecx)
8 (%ebp) , sedx
%$ecx) , $eax
%$edx) , $ebx
$eax, (%edx)
%$ebx, (%ecx) J

> Body

-4 (%ebp) , $ebx)

sebp, sesp > Finish
Sebp

-

15-213, S’03

swap Setup #1

Entering
Stack

<4+— Sebp

&zip2

&zipl

Rtn adr |[¢— %esp

swap:
pushl %ebp
movl %esp, $Sebp
pushl %ebx

—19—

Resulting

Stack

yp

Xp

Rtn adr

Old %$ebp

sebp

sesp

15-213, S’03

swap Setup #2

Entering
Stack

<4+— Sebp

&zip2

&zipl

Rtn adr |[¢— %esp

swap:
pushl %ebp
mov]l %$esp, $ebp

Resulting

Stack

yp

Xp

Rtn adr

Old %$ebp

pushl %ebx

—20—

sebp

sesp

15-213, S’03

swap Setup #3

Entering
Stack

<4+— Sebp

&zip2

&zipl

Rtn adr |[¢— %esp

swap:
pushl %ebp
movl %esp, $Sebp
pushl %ebx

—21—

Resulting

Stack

yp

Xp

Rtn adr

Old %$ebp

Old $ebx

sebp

sesp

15-213, S’03

Effect of swap Setup

Entering
Stack Resulting
«— 3ebp Stack
: Offset
(relative to $ebp)
&§zip2 12 VP
&zipl 8 Xp
Rtn adr [«— %esp 4 | Rtn adr
0 |Old sebp[¢— %ebp
Old $ebx|¢+— %esp

movl 12 (%ebp), %ecx # get yp
movl 8 (%ebp), %edx # get xp Body

2o 15-213, S’03

swap Finish #1

swap 'S
Stack .
Offset)
12 ypP
8 Xp
4 | Rtn adr
0 |Old sebp[¢— %ebp
-4 |Old $ebx|¢+— %esp
Observation

= Saved & restored register 3ebx

_23—

Offset
12

-4

yp

Xp

Rtn adr

Old 2ebpl¢¥— %ebp

Old %ebx|¢— %esp

movl -4 (%ebp) 6 Sebx
movl %ebp, $Sesp
popl %ebp

ret

15-213, S’03

swap FInish

swap 'S

Stack

Offset
12

—24—

yp

Xp

Rtn adr

Old %ebp

<_

Old $ebx

4—

sebp

sesp

swap 'S

Stack

Offset

12
8
4
0

YP
Xp
Rtn adr
Old sebp sebp

sesp

movl -4 (%ebp) ,h Sebx
movl %ebp, $esp
popl %ebp

ret

15-213, S’03

swap FInish

swap 'S
Stack

Offset

12
8
4
0

_25—

yp

Xp

Rtn adr

Old %ebp

sebp

sesp

swap 'S
Stack

Offset

12
8
4

l— sebp
YP
Xp
Rtn adr

‘\\~%esp

movl -4 (%ebp) ,h Sebx
movl %ebp, $Sesp
ropl %ebp

ret

15-213, S’03

swap FInish

swap 'S
Stack .
Offset)
12 ypP
8 Xp
4 | Rtn adr
Observation

= Saved & restored register 3ebx
= Didn't do so for 3eax, $ecx, Oor $edx

—26—

l— sebp

\ sesp

<4+— Sebp

: Exiting
Stack

&zip2

&zipl [¢&— Sesp

movl -4 (%ebp) ,h Sebx
movl %ebp, $Sesp
popl %ebp

ret

15-213, S’03

Register Saving Conventions

When procedure yoo calls who:

yoo is the caller, who is the callee

Can Register be Used for Temporary Storage?

yoo:
movl $15213, %edx
call who
addl %edx, %eax

who:

movl 8 (%ebp), %edx
addl $91125, %edx

ret

ret

= Contents of register $edx overwritten by who

_27— 15-213, S’03

Register Saving Conventions

When procedure yoo calls who:
= yoo is the caller, who is the callee

Can Register be Used for Temporary Storage?

Definitions

= “Caller Save” register
= Caller saves temporary in its frame before calling

= “Callee Save” register
= Callee saves temporary in its frame before using

Conventions
= Which registers are caller-save, callee-save?

28— 15-213, S’03

IA32/Linux Register Usage

Integer Registers
= Two have special uses

= %ebp, Sesp
= Three managed as
callee-save
" %ebx, $Sesi, Sedi
= Old values saved on
stack prior to using
= Three managed as
caller-save
" %$eax, Sedx, Secx
= Do what you please,
but expect any callee
to do so, as well
= Register seax also

29 stores returned value

Caller-Save
Temporaries

<

Callee-Save
Temporaries

<

Special <<

\/

\[

%$eax

$edx

%$ecx

$ebx

%$esi

$edi

sesp

sebp

15-213, S’03

Stack Summary

The Stack Makes Recursion Work

= Private storage for each instance of procedure call
= Instantiations don't clobber each other

= Addressing of locals + arguments can be relative to stack
positions

= Can be managed by stack discipline
= Procedures return in inverse order of calls

|IA32 Procedures Combination of Instructions +
Conventions
= call/ ret instructions
= Register usage conventions

= Caller / Callee save
= %ebp and %esp

= Stack frame organization conventions
—-30- 15-213, S’'03

Before & After main ()

int main(int argc, char *argv[]) {

if (argec > 1) {

}

printf (“%s\n”, argv[1l]);
else {

char * av[3] = { 0, O, O };

aV[O] = argv[O]; av[l] = “Fred”:

execvp (av[0], av);

return (1);

—31—

15-213, S’03

The Mysterious Parts

argc, argv
= Strings from one program
= Available while another program is running
= Which part of the memory map are they in?
= How did they get there?

What happens when main () does “return (1) 7???
= There's no more program to run...right?
= Where does the 1 go?
= How does it get there?

410 students should seek to abolish mystery

30— 15-213, S’03

The Mysterious Parts

argc, argv
= Strings from one program
= Available while another program is running
Inter-process sharing/information transfer is OS's job
OS copies strings from old address space to new in exec()
Traditionally placed “below bottom of stack”
Other weird things (environment, auxiliary vector) (above argv)

arg
vector
main ()

printf ()

—33— 15-213, S'03

The Mysterious Parts

What happens when main () does “return (1) ”???
= Defined by C to have same effect as “exit (1)”
= But how??

The “main() wrapper”
= Receives argc, argv from OS
Calls main(), then calls exit()
Provided by C library, traditionally in “crt0.s”
Often has a “strange” name

/* not actual code */

volid ~~main(int argc, char *argv[]) {

exlt (main (argc, arqgv);

—34— 15-213, S’03

Project O - “Stack Crawler”

C/Assembly function
= Can be called by any C function
= Prints stack frames in a symbolic way

——-Stack Trace Follows——-

Function fun3(c='c', d=2.090000d), in
Function fun2 (£=35.000000f), in
Function funl (count=0), in

Function funl (count=l), in

Function funl (count=2), in

35— 15-213, S'03

Project O - “Stack Crawler”

Conceptually easy
= Calling convention specifies layout of stack
= Stack is “just memory” - available for you to inspect

Key questions
= How do | know 0x80334720 is “funl”?
= How do | know fun3()'s second parameter is called “d”?

—36— 15-213, S’03

Project 0 “Data Flow”

symbol-table array
many slots, blank

_37—

fun.c

th.c

tb_globals.c

A

15-213, S’03

Project 0 “Data Flow” - Compilation

—38—

fun.o

th.o

tb_globals.o

15-213, S’03

Project 0 “Data Flow” - Linking

tb_globals.o

debugger info

—39—

15-213, S’03

Project 0 “Data Flow” - PO “Post-Linking”

mutate

tb_globals.o

debugger 1info

simplify

—40— 15-213, S’03

Summary

Review of stack knowledge

What makes main () special

Project 0 overview

Start interviewing Project 2/3/4 partners!

41— 15-213, S’03

