Solutions
15-410, Fall 2005, Homework Assignment 1.

1 Run Away (10 pts.)

1.1 5pts

Explain roughly how flee () works.

The job of flee() is to return execution to the point where we_fled() was first called, with a non-zero
return code. Looking at it another way, £lee () is supposed to cause we_fled() to “return” a second time.
Thus the stack needs to be the same height as if we_fled() were returning, the program counter needs to
be set to we_fled()’s return address, and callee-save registers need to be restored to the correct values. Oh,
yes, %eax needs to be something other than zero. Overall, a bunch of registers need to be set to particular
values and a ret instruction needs to be executed.

1.2 5pts

What are the fields of a £1ight_path? Be specific if you can.

You need %esp, %ebp, we_fled()’s return address, and the values of the callee-save registers. You may
include some sanity-checking information to catch certain invalid invocations of £lee(), and it’s up to you
whether or not you believe signal-handling information should be included (it’s been done both ways in
setjmp() /longjmp()).

2 Racy (15 pts.)

This question is due to Dijkstra via Nutt.

You should show mutual exclusion doesn’t hold with an execution trace.
Execution Trace

time Thread 0 Thread 1
0 | 3:criticall[1l]l==
1 3:critical[0]==
2 | b:criticall[0]=1
3 H:criticall[1]=1
4 6:...begin. ..
) 6:...begin. ..

You can argue that progress holds as follows. Since the polling loop at lines 3 and 4 only tests values
but doesn’t modify them, the only way for the system to get stuck there with nobody entering the critical
section would be for both “critical” flags to be on simultaneously (which would be a deadlock, certainly no
progress possible). But there is no way for a particular process to enter the loop with its own flag on—the
flags are initially zero and are always set to zero by each process at the end of its critical section, which is
the same thing as before the loop. So if both processes are in the loop then both flags are off, and both will
proceed into the critical section, which is what we were complaining about above.

Bounded waiting does not hold, since one thread can enter over and over as long as the other thread
samples at just the right/wrong time. That is, you can run the execution trace below an infinite number of

times back-to-back and Thread 0 will never enter the critical section.
Execution Trace

time Thread 0 Thread 1

3:critical[1]==

0 3:critical[0]==
1 H:criticall[1]=1
2 6:...begin. ..
3 6:...end...

4

5

5:critical[1]=0

3 Fascinating (10 pts.)

3.1 4 pts

Is the following state safe? Why or why not?

A safe sequence is: give the remaining tape drive to Process A, at which point you have two tape drives
to satisfy Process B’s possible request for one, at which point you have three drives to satisfy Process C’s
possible request for two. So the state is safe.

3.2 4 pts

Is the following state safe? Why or why not?

There is no safe sequence. Observe that any requesting process must sleep, since there are no free
resources. Observe further that all three processes are allowed to request. If all do, then each will be holding
non-preemptible mutual-exclusion resources while waiting for each other.

Of course, if only two request, and the third exits without requesting its second tape drive, then there
will not be a deadlock—this time.

3.3 2 pts

Is there something odd about this system?

It depends on your perspective, but safety effectively reduces the amount of parallelism available in the
hardware from three concurrent processes’ worth to two. If you run a deadlock-avoidance allocator, one
process will always be idle.

Assuming that the processes typically use one tape drive and only rarely need the second one, a deadlock-
avoidance resource manager will rarely allocate the third tape drive. Your manager will walk into the machine
room and see two tape drives spinning and one idle, and one process idle, and will probably be unhappy
even after you draw lots of circles and arrows. You can argue that all you need to get the third tape drive
spinning is for your manager to buy you a fourth one... but when should you mention that number four will
hardly ever spin?

Of course, utilization is even worse if a simpler approach, deadlock prevention in the form of all-at-once
allocation, is used.

