Project 2: User Level Thread Library
15-410 Operating Systems
September 26, 2004

1 Overview

An important aspect of operating system design is orgagizomputations that run concurrently and share
memory. Concurrency concerns are paramount when desigmitigthreaded programs that share some
critical resource, be it some device or piece of memory. s phoject you will write a thread library and
concurrency primitives. This document provides the baolgd information and specification for writing
the thread library and concurrency primitives.

We will provide you with a miniature operating system ker(eglled “Pebbles”) which implements
a minimal set of system calls, and some multi-threaded progr These programs will be linked
against your thread library, stored on a “RAM disk,” and tlman under the supervision of the Pebbles
kernel. Pebbles is documented by the companion documestipt®s Kernel Specification,” which should
probably be reatiefore this one.

The thread library will be based on thbr ead_f or k system call provided by Pebbles, which provides
a “raw” (unprocessed) interface to kernel-scheduled ttgedour library will provide a basic but usable
interface on top of this elemental thread building block]iiing the ability to join threads.

The concurrency primitives will be based on @G instruction for atomically exchanging registers
and memory or registers and registers. With this instracgiou will implement mutexes and condition
variables.

2 Goals

e Becoming familiar with the ways in which operating systemapport user libraries by providing
system calls to create processes, affect scheduling, etc.

e Becoming familiar with programs that involve a high levebohcurrency and the sharing of critical
resources, including the tools that are used to deal witbetissues.

e Developing skills necessary to produce a substantial atnounode, such as organization and
project planning.

e Working with a partner is also an important aspect of thiggmto You will be working with a partner
on subsequent projects, so it is important to be familiahwitheduling time to work, a preferred
working environment, and developing a good group dynamiorbebeginning larger projects.

e Coming to understand the dynamics of source control in agomntext, e.g., when to branch and
merge.

3 Important Dates

Wednesday, September 22ndProject 2 begins

Wednesday, September 29thYou should have thread creation, mutexes, and conditidablas working
well.

Friday, October 8th Project 2 due at 23:59:59

4 Thread Library API

The library you will write will contain:

Thread management calls

Mutexes and condition variables

Semaphores

Readers/writers locks

Please note that all lock-like objects are defined to be ‘tkd#dd” when created.

You need not ensure bounded waiting if your project docuatem includes an appropriate
explanation of why you believe it is likely to be true (or aa$t not flagrantly false) without effort on
your part.

Unlike system call stubs (see “Pebbles Kernel Specificgtidmread library routines need not be one-
per-source-file, but we expect you to use good judgement wh#itioning them (and this may influence
your grade to some extent). You should arrange that the Makefrastructure you are given will build
your library intol i bt hr ead. a (see theREADME file in the tarball).

User programs will includéhr ead. h, but will not directly include other header files you mightiter

4.1 Thread Management API

e int thr_init(unsigned int size) - This function is responsible for initializing the thread
library. The argumendi ze specifies the amount of stack space which will be availabiei$e by
threads created withhr _creat e().

This function returns zero on success, and a negative nuombenror.

The thread library can assume that programs using it areheblhved in the sense that they will
callthr_init(), exactly once, before calling any other thread library fiomc(including memory
allocation functions in theal | oc() family, described below) or invoking thehr ead_f or k system
call. Also, you may assume that all threads of a task using §waad library will callt hr _exi t ()
instead of directly invoking thexi t () system call.

e int thr_create(void *(*func)(void *), void *arg) - This function creates a new thread
to runfunc(arg). This function should allocate a stack for the new thread thed invoke the
t hread_f or k system call in an appropriate way. A stack frame should b&tedefor the child, and
the child should be provided with some way of accessing resaith identifier (tid). On success the
thread ID of the new thread is returned, on error a negativeo®u is returned.

You should pay attention to (at least) two stack-relatediass First, the stack pointer should
essentially always be aligned on a 32-bit boundary (i.e.sf4aod 4 == 0). Second, you need
to think very carefully about the relationship of a new tlitda the stack of the parent thread,
especially right after thehr ead_f or k system call has completed.

2

e int thrjoin(int tid, int *departed,
void **status) - This function suspends execution of the calling threadl \&aits for thread
tidtothr_exit() ifitexists. Iftid is zero any thread belonging to the invoking thread's task is
joined on. Ifdeparted is not NULL, it is the address where the tid of the departingal should
be stored. Ikt at us is not NULL, the value passed tdir _exi t () by the departing thread will be
placed in the location referenced &iyat us. Only one thread may join on any given thread. Others
will return an error immediately. If thread d does not exist, an error will be returned. This function
returns zero on success, and a negative number on error.

e void thr_exit(void *status) - This function exits the thread with exit statasat us. If
a thread does not catlhr _exit (), the behavior should be the same as if the function did call
thr_exit() and passed in the return value from the thread’s body fumctio

e int thr_getid(void) - Returns the thread ID of the currently running thread.

e int thr_yield(int tid) - Defers execution of the invoking thread to a later time wofeof the
thread with IDti d. If tid is -1, yield to some unspecified thread. If the thread with i[d is not
runnable, or doesn't exist, then an integer error code hems zero is returned. Zero is returned on
success.

Note that the “thread IDs” generated and accepted by yoaathlibrary routines (e.g.hr _geti d(),
t hr_j oi n()) are not required to be the same “thread IDs” which are géegiend accepted by the thread-
related system calls (e.g.hread_fork, gettid(), make_runnabl e()). If you think about how you
would implement an “M:N” thread library, or a user-spaceetitt library, you will see why these two
name spaces cannot always be the same. Whether or not yoeraséiksued thread ID’s as your thread
library’s thread ID’s is a design decision you will need tosmler.

4.2 Mutexes

Mutual exclusion locks prevent multiple threads from sitanéously executing critical sections of code.
To implement mutexes you may use ¥@HGinstruction documented on page 3-714 of the Intel Instoucti
Set Reference. For more information on the behavior of nasieteel free to refer to the text, or to the
Solaris or Linuxpt hread_nmut ex_i ni t () manual page.

e int nmutex_init(nutex_t *np) - This function should initialize the mutex pointed to by mp.
The effects of using a mutex before it has been initializedpfdnitializing it when it is already
initialized and in use, are undefined (and may be startlifiggis function returns zero on success,
and a negative number on error.

e int nmutex_destroy(mutex_t *np) - This function should “deactivate” the mutex pointed to
by np. The effects of using a mutex from the time of its destructumtil the time of a possible
later re-initialization are undefined. If this function ialled while the mutex is locked, it should
immediately return an error. This function returns zero wecgss, and a negative number on error.

e int nutex_lock(nmutex_t *mp) - A call to this function ensures mutual exclusion in the oegi
between itself and a call trut ex_unl ock() . A thread calling this function while another thread is
in the critical section should block until it is able to claiime lock. This function returns zero on
success, and a negative number on error.

e int nutex_unl ock(nutex_t *np) - Signals the end of a region of mutual exclusion. The calling
thread gives up its claim to the lock. This function returesozon success, and a negative number
on error.

4.3 Condition Variables

Condition variables are used for waiting, for a while, fortexiprotected state to be modified by some
other thread. A condition variable allows a thread to vawiht relinquish the CPU so that other
threads may make changes to the shared state, and theretalbtting thread that they have done so.
If there is some shared resource, threads may de-schedutesé¢hves and be awakened by whichever
thread was using that resource when that thread is finishéditwin implementing condition variables,
you may use your mutexes, and the system addischedul e() and make_runnabl e(). For more
information on the behaviour of condition variables, piessfer to the Solaris or Linux documentation on
pt hread_cond_wai t ().

e int cond.nit(cond_t *cv) - This function should initialize the condition variableipted to
by cv. The effects of using a mutex before it has been initializadef initializing it when it is
already initialized and in use, are undefined. This functtrns zero on success and a number
less than zero on error.

e int cond_destroy(cond_t *cv) - This function should “deactivate” the condition variable
pointed to bycv. The effects of using a condition variable from the time sfdestruction until the
time of a possible later re-initialization are undefinec:dfid_dest r oy() is called while threads are
still blocked waiting on the condition variable, then thadtion should return an error immediately.
This function returns zero on success and a number less ¢énaroz error.

e int condwait(cond_t *cv, mutex_t *np) - The condition wait function allows a thread to
wait for a condition and release the associated mutex thmedtls to hold to check that condition.
The calling thread blocks, waiting to be signaled. The bdockhread may be awakened by a
cond_si gnal () or acond_broadcast (). This function returns zero on success, and a negative
number on error.

e int condsignal (cond_t *cv) - This function should wake up a thread waiting on the
condition variable pointed to byv, if one exists. This function returns zero on success, and a
negative number on error. Note that “no threads waitingioisan error condition.

e int cond_broadcast(cond_t *cv) - This function should wake up all threads waiting on the
condition variable pointed to bgv. This function returns zero on success, and a negative numbe
on error.

Note thattond_br oadcast () shouldnot awaken threads which may invokend_wai t (cv) “after”
this call tocond_br oadcast () has begun executioh.

4.4 Semaphores

As discussed in class, semaphores are a higher-level gohsgtran mutexes and condition variables.
Implementing semaphores on top of mutexes and conditiormhbtas should be a straightforward but
hopefully illuminating experience.

1if that sounds a little fuzzy to you, you're right—but if yohink about it a bit longer it should make sense.

4

4.5

int seminit(semt *sem int count) - This function should initialize the semaphore
pointed to bysemto the valuecount . Effects of using a semaphore before it has been initialized
may be undefined. This function returns zero on success aaohbar less than zero on error.

int semdestroy(semt *sem) - Thisfunction should “deactivate” the semaphore pointetyt
sem Effects of using a semaphore after it has been destroyecomaypdefined. I§emdest roy()

is called while threads are still blocked waiting on the sphaaie, then the function should return
an error immediately. This function returns zero on suce@ssa number less than zero on error.

int semwait(semt *sem) - The semaphore wait function allows a thread to decrement a
semaphore value, and may cause it to block indefinitely itrisllegal to perform the decrement.
This function returns zero on success, and a negative nuombenror.

int semsignal (semt *sem) - This function should wake up a thread waiting on the
semaphore pointed to gem if one exists, and should update the semaphore value tegard
This function returns zero on success, and a negative nuombenror.

Readers/writers locks

Please refer to Section 7.5.2 of the textbook. We expectgacolie at least the “second” readers/writers
problem, but we would like to point out that there are otheémfalations than the “first” and “second.”
You may choose to implement something “at least as good as*sicond” case. Of course, no matter
what you choose to implement you should explain what, hod/yeimy. You may choose which underlying
primitives (i.e., mutex/cvar or semaphore) to employ, mgeagain we are interested in tteasoning you
employ.

int rwock_init(rwockt *rw ock) - This function should initialize the lock pointed to by
rw ock. Effects of using a lock before it has been initialized mayubeefined. This function
returns zero on success and a number less than zero on error.

int rw ock_destroy(rw ock_t *rw ock) - This function should “deactivate” the lock pointed
to by rw ock. Effects of using a lock after it has been destroyed may becfumet. If

rwl ock_destroy() is called while threads are still blocked waiting on the lottlen the function
should return an error immediately. This function returasozon success and a number less than
zero on error.

int rwock_lock(rwockt *rwock, int type) - Thetype parameter is required to be
either RALOCK_READ (for a shared lock) oRALOCK_WRI TE (for an exclusive lock). This function
blocks the calling thread until it has been granted the reiggeform of access. This function returns
Zero on success, and a negative number on error.

int rw ock_unlock(rwock_t *rw ock) - This function indicates that the calling thread is
done using the locked state in whichever mode it was grarntedsa for. Whether a call to this
function does or does not result in a thread being awakenpendis on the policy you chose to
implement. This function returns zero on success, and dimegaimber on error.

Note: Wewill not grade your readers/writers implementation unless your threlachty passes a
specified series of tests; see Section 9.

4.6 Safety & Concurrency

Please keep in mind that much of the code for this projectsheete thread safe. In particular the thread
library itself should be thread safe. However, by its nattlread library must also be concurrent. In
other words, you maypot solve the thread-safety problem with a hammer, such as asgigbal lock to
ensure that only one thread at a time can be running threahlibode. In general, it should be possible
for many threads to be running each library interface fumctat the same time.”

4.7 Distribution Files

The tarball for this project has been posted on the coursepageh Please read the README included
with the tarball.

5 Documentation

For each project in 15-410, functions and structures shioelldocumented using doxygen. Doxygen uses
syntax similar to Javadoc. The Doxygen documentation cdale on the course website. The provided
Makefile has a target calldd ml _doc that will invoke doxygen on the source files listed in the Midke

6 The C Library

This is simply a list of the most common library functionstthae provided. For details on using these
functions please see the approprict@ pages.

Other functions are provided that are not listed here. Blesae the appropriate header files for a full
listing of the provided functions.

Some functions typically found in a C I/O library are providey 410user/|ib/1ibstdi o.a. The
header file for these functions440user/|i b/ i nc/ stdi o. h, aka#i ncl ude<st di 0. h>.

e int putchar(int c)

e int puts(const char *str)

e int printf(const char *format, ...)

e int sprintf(char *dest, const char *format, ...)

e int snprintf(char *dest, int size, const char *formant, ...)
e int sscanf(const char *str, const char *format, ...)

e void lprintf(const char *format, ...)

Note thatl printf() isthe user-space analog of theri nt f _kern() you used in Project 1.

Some functions typically found in various places in a stadd&€ library are provided by
410user/lib/libstdlib.a. The header files for these functionsditQuser/ i b/inc, arestdl i b. h,
assert. h, andct ype. h.

int atoi (const char *str)

| ong atol (const char *str)

long strtol (const char *in, const char **out, int base)

unsigned long strtoul (const char *in, const char **out, int base)
voi d panic(const char *format, ...)

voi d assert(int expression)

We are providing you witmon-thread-safe versions of the standard C library memory allocation
routines. You areequired to provide a thread-safe wrapper routine with the apprtgoname (remove the
underscore character) for each provided routine. Thesddhe genuine wrappers, i.e., dot copy and
modify the source code for the provided routines.

e void *_mal |l oc(size_t size)

e void *_calloc(size_t nelt, size_t eltsize)

e void *_realloc(void *buf, size_t newsize)

e void _free(void *buf)

You may assume that no calls to functions in the “malloc() ifghwill be made before the call to
thr_oinit().

These functions will typically seek to allocate memory cewi from the kernel which start at the top
of the data segment and proceed to grow upward. You will theexirto plan your use of the available
address space with some care.

Some functions typically found in a C string library are pgomd by410user/lib/libstring. a.
The header file for these functionsditOuser /i b/inc/string. h.

e int strlen(const char *s)

e char
e char
e char
e char

e char

*strcpy(char *dest, char *src)
*strncpy(char *dest, char *src, int n)
*strdup(const char *s)

*strcat (char *dest, const char *src)

*strncat (char *dest, const char *src, int n)

e int strcnp(const char *a, const char *b)

e int strncmp(const char *a, const char *b, int n)

e void *nenmove(void *to, const void *from unsigned int n)

e void *nenset (void *to, int ch, unsigned int n)

e void *nentpy(void *to, const void *from unsigned int n)

7 Debugging

The sameévVAd C_BREAK macro which you used in Project 1 is also available to usee ¢odProject 2 if
you#i ncl ude theuser/inc/ magi c_break. h header file.

The function calll printf() may be used to output debugging messages from user progiéns.
prototype is imd10user/1i b/inc/stdio. h.

Also, user code can be symbolically debuged using the Sisyintholic debugger.f you restrict
yourself to debugging with printf() it may cost you significant amounts of time.

8 Deliverables

Implement the functions for the thread library, and conenicly tools conforming to the documented APIs.
Hand in all source files that you generate. Make sure to peosidesign description in README.dox,
including an overview of existing issues and any intergstlasign decisions you made.

9 Grading Criteria

You will be graded on the completeness and correctness ofproject. A complete project is composed
of a reasonable attempt at each function in the API. Also,naptete project follows the prescribed build
process, and is well documented. A correct project implém#re provided specification. Also, code
using the API provided by a correct project will not be killegl the kernel, and will not suffer from
inconsistencies due to concurrency errors in the libratgage note that there exist concurrency errors
that even carefully-written test cases may not expose. Reddhink through your code carefully. Do not
forget to consider pathological cases.

The most important parts of the assignment to complete adhitead management, mutex, and
condition variable calls. These should be well-designelicly implemented, and thoroughly tested with
m sbehave() (see below). It is probably unwise to devote substantialnpdffort to the other parts of
the library before the core is reliable. In particular, wil not grade readers/writers implementations for
Project 2 submissions which do not pass the “hurdle” subdsiiedest suite (see the project web page for
details).

10 Debugging

10.1 Requests for Help

Please do not ask for help from the course staff with a medgaghis:
The kernel is killing my threads! Why?
or

Why is my program stuck imal | oc() ?

An important part of this class is developing your debuggkig)s. In other words, when you complete
this class you should be able to debug problems which youqarsly would not have been able to handle.

Thus, when faced with a problem, you need to invest some tinfiguring out a way to characterize
it and close in on it so you can observe it in the actual act efrdetion. Your reflex when running into a
strange new problem should be to start thinking, not to sfatly asking for help.

Having said that, if a reasonable amount of time has beent $p@mng to solve a problem and no
progress has been made, do not hesitate to ask a questiopleBse be prepared with a list of details and
an explanation of what you have tried and ruled out so far.

10.2 Debugging Strategy

In general, when confronted by a mysterious problem, youlshimegin with a “story” of what yowxpect
to be happening and measure the system you're debugging totssre its behavior diverges from your
expectations.

To do this your story must be fairly detailed. For exampley gbould have a fairly good mental model
of the assembly code generated from a given line of C codendierstand why “a variable has the wrong
value” you need to know how the variable is initialized, wdés value is stored at various times, and how
it moves from one location to another. If you're confusedwdhibis, it is probably good for you to spend
some time withgcc - S.

Once your “story” is fleshed out, you will need to measure tysesn at increasing levels of detalil
to determine the point of divergence. You will find yoursgleading some time thinking about how to
pin your code down to observe whether or not a particular ehiagbior is happening. You may need to
write some code to periodically test data-structure comscy, artificially cause a library routine to fail to
observe how your main code responds, log actions taken bycguie and write a log-analyzer perl script,
etc.

Please note that the memory allocator we provide you witkerg gimilar to the allocator written by
15-213 students in the sense that errors reported by theatip or program crashes which take place
inside the allocator, are likely to mean that the user of someenory overflowed it and corrupted the
allocator’s meta-data.

11 Strategy

11.1 Suggestions

First, this may be the first time you have written code witls thdriety and density of concurrency hazards.
If so, you will probably find this code much harder to debugnticade you've written before, i.e., you
should allocate more debugging time than usual. Of counsssilver lining in this cloud is that experience
debugging concurrent code will probably be useful to yoarafbu leave this class.

Secondgseveral of the thread library functions arauch harder then they first appear. It is fairly likely
that you will write half the code for a thread library functidcefore realizing that you've never written
“that kind of code” before. When this happens the best coofrgetion is probably to come to a complete
stop, think your way through the problem, and then explaengioblem and your proposed solution to
your partner. It may also happen that as you write your fiftiicfion you realize your second must be
scrapped and re-written.

Third, the Pebbles kernel offers a feature intended to helpigcrease the solidity of your code. A
special system call,oi d mi shehave(int node), alters the behavior of the kernel in ways which may
expose unwarranted assumptions or concurrency bugs inlipoary code. Values fonode range from
zero (the default behavior) to thirty-one, or you may seldcfor behavior which may be particularly
challenging. As you experiment with sbehave(), you may become able to predict or describe the
behavior of a particulamode. Each group must keep confidential its own understandingehteanings
of particularnode values.

Fourth, we recommendgainst splitting the assignment into two parts, working sepayatitil the
penultimate day, and then meeting to “put the pieces togéthestead, we recommend the opposite,
namely that you make it a habit to readd talk about each other's code every few day¥ou may
encounter an exam question related to code your partner wra.

Fifth, instead of typing linked-list traversal code 100 ¢isnthroughout your library, thus firmly and
eternally committing yourselves to a linear-time datacdtite, give some consideration to encapsulation.

Sixth, we strongly recommend that you use a source-conggies to manage the evolution and/or
devolution of your code. While the complexity of this prdj&mes not outright necessitate the use of
source control, this is a good opportunity for you to get usatand set up a work flow with your partner.

11.2 Steps

1. Read the handout.

2. Right away write system call wrappers for one or two system calls andarsmall test program
using those system calls. This is probably the best way tagamgourself in the project and to get an
initial grasp of its scope. A good first choicedsi t (), since the C run-time start-up code requires
anexit() stub to exist before you can build any test program. A goodrschoice would be

print().
3. Write the remaining system call wrappers (with the exoapdft hr ead_f or k).

4. Design and make a draft version of mutexes and conditioahias. In order to do that, you will
probably need to perform a hazard analysis of which systdln @asystem call sequences would
harm each other if their execution were interleaved by tledaler switching from one thread to
another.

What can you test at this point? Be creative.
Think hard about stacks. What should the child’s stack li® before and after ahr ead_f or k?
Write and testhr _i ni t () andthr _create().

Writet hr _exi t () . Don’t worry about reporting exit status, yet—it's trickp@ugh without that!

© ® N o v

Test mutexes and condition variables.
10. Try all them shehave() flavors.

11. Write and testhr _join().

12. Worry about reporting the exit status.

13. This might be a good point to relax and have fun writing @ehores.

10

14. Test. Debug. Test. Debug. Test. Sleep once in a while.
15. Try all them sbhehave() flavors (again).
16. Design, implement, and test readers/writers locks.

17. Celebrate! You have created a robust and useful keapglested user level thread library.

11.3 Questions & Challenges

Below we briefly discuss common questions about this assghieind issue several optional challenges.
It is very important that your implementation be solid, amdiyshould not be diverted from this primary
goal by attempting to solve these challenges. However, e@maviding this challenge list as a way for
interested students to deepen their understanding anpeshtireir design skills.

11.3.1 Questions

From time to time we are asked how many threads must be segpbyt a library implementation. In
general the answer is that the thread library should not bitirlg factor—it should be possible to use all
available memory for threads, and of course it could happenday that Pebbles would run on a machine
with more memory. In the other direction, if you feel you mimpose a static limit on the number of
threads (or some other run-time feature), you should doougaair reasoning and we will attempt to take
it into account.

It has been pointed out to us that, if a thread is killed by tken&l as a result of some improper
behavior, your thread library has no way to find out about &lnig take remedial action. This is true, and
thus the thread library cannot be held responsible for gmasbehavior on the part of threads it hosts. In
fact, you can probably think of other sorts of errant behawibich your library can’t reasonably protect
against.

11.3.2 Challenge: efficient hr _geti d()

There is an easy way to implemaeritr _geti d(), but it is woefully inefficient. Can you do better? We
have given you a serious hint.

11.3.3 Challenget hr_init()

Is it really necessary thathr_init() be called beforawal | oc()? How might you buildmal | oc()
to make that unnecessary? Is it really necessary to recueredot thread of a task to explicitly call
thr_exit()? Isthere awayhr_init() can arrange for that call to happen automatically?

11.3.4 Challenge: “reaper thread”

If you feel you need a “reaper thread,” consider whether&dly necessary.

11

11.3.5 Challenge: memory-efficient hr _exi t ()

Since there is no bound on how much time can pass betweerea txging and its “parent” or “manager”
thread calling hr _j oi n(), it is undesirable for a “zombie thread” to hold onto largecaims of memory.
Can you avoid this situation? There are multiple approachitk different tradeoffs.

12

	Overview
	Goals
	Important Dates
	Thread Library API
	Thread Management API
	Mutexes
	Condition Variables
	Semaphores
	Readers/writers locks
	Safety & Concurrency
	Distribution Files

	Documentation
	The C Library
	 Debugging
	 Deliverables
	 Grading Criteria
	Debugging
	Requests for Help
	Debugging Strategy

	 Strategy
	 Suggestions
	 Steps
	 Questions & Challenges
	Questions
	Challenge: efficient thr_getid()
	Challenge: thr_init()
	Challenge: ``reaper thread''
	Challenge: memory-efficient thr_exit()

