15-410, Operating System Design & Implementation
Pebbles Kernel Specification
September 26, 2004

Contents

1 Introduction
1.1 OVEIVIEW o o

2 User Execution Environment

3 The System Call Interface
3.1 InvocationandReturn. e
3.2 Validation
3.3 SystemCall StubLibrary

4 System Call Specifications
4.1 OVEIVIEW o e e e e e
4.2 LifeCycle
4.3 Thread Management
4.4 Memory Management. e e
45 Consolel/O e
4.6 Miscellaneous System Interaction,

1 Introduction

This document defines the correct behavior of kernels foFFdie2004 edition of 15-410. The
goal of this document is to supply information about behiarather than implementation details.
In Project 2 you will be given a kernel binary exhibiting tedsehaviors upon which to build your
thread library; later, in Project 3, you will construct a ikekFwhich behaves this way.

1.1 Overview

The 410 kernel environment supports multiple address spaaehardware paging, preemptive
multitasking, and a small set of important system calls.oAthe kernel supplies device drivers
for the keyboard, the console, and the timer.

2 User Execution Environment

The “Pebbles” kernel supports multiple independesks each of which serves as a protection
domain. A task’s resources include various memory regias “@visible” kernel resources
(such as a queue of task-exit notifications). Some versibiiedernel support file 1/0, in which
case file descriptors are task resources as well.

Execution proceeds by the kernel scheduliigeads Each thread represents an
independently-schedulable register set; all memory eefs¥s and all system calls issued by
a thread represent accesses to resources defined and owtteel thyead’s enclosing task. A
task may contain multiple threads, in which case all haveakguacess to all task resources.
A carefully designed set of cooperating library routines taverage this feature to provide a
simplified version of POSIX “pthreads.”

Multiprocessor versions of the kernel may simultaneousty multiple threads of a single
task, one thread for each of several tasks, or a mixture.

When a task begins execution of a new program, the operatsigra builds several memory
regions from the executable file and command line arguments:

e Aread-only code region containing machine instructions
e An optional read-only-constant data region
e A read/write data region containing some variables.

e A single automatic stack region containing a mixture ofahlés and procedure call return
information. The stack begins at some “large” address anchang accesses typically
cause the kernel to add new pages, growing the region dowlrtexard the top of the data
region. Of course, if they collide, disaster will result.

In addition, the task may add memory regions as specifiedwbelo

Pebbles allows one task to create another though the use béith() andexec() system
calls, which you will not need for Project 2 (the shell pragravhich we provide so you can
launch your test programs does use them).

3 The System Call Interface

3.1 Invocation and Return

User code will make requests of the kernel by issuing a so#iwaterrupt using the NT
instruction. Interrupt numbers are definedtirOuser /| i b/inc/syscall int.h.

To invoke a system call, the following protocol is followedf. the system call takes one
32-bit parameter, it is placed in tRési register. Then the appropriate interrupt, as defined
in syscal | _nums. h, is raised via thé NT x instruction (each system call has been assigned its
own | NT instruction, hence its own value gj. If the system call expects more than one 32-bit
parameter, you should construct a “system call packet’animg the parameters and place the
addressof the packet iesi . In C you would create a structure like this:

struct read line_parns {
int len;
char *buf;

}orip;

It is probably a good idea for you to think about the declaragiof your “packet” structures.
In particular, you probably want to consider how widely kmothiese types must be.

After filling in the struct, you would arrange fér | p to be placed ifesi . When the system
call completes, the return value, if any, will be availabighe%ax register.

Please remember your x86 calling convention rules. If yodifgany callee-saved registers
inside your stub routines, you must restore their valuesreakturning to your caller.

3.2 Validation

The 410 kernel verifies that every byte of every system cgliment lies in a memory region
which the invoking thread’s task has appropriate permistioaccess. System calls will return
an integer error code less than zero if any part of any argtuimenvalid. The kernetloes not
kill a user thread that invokes a system call with a bad arguntdo action taken by user code
shouldevercause the kernel to crash, hang, or otherwise fail to perftsrjob.

3.3 System Call Stub Library

While the kernel provides system calls for your use, it doaspmovide a “C library” which
accesses those calls. Before your programs can get thd keh@ anything for them, you will
need to implement an assembly code “stub” for each systdm cal

3

Stub routinesmustbe one per file and you should arrange that the Makefile imtretstre
you are given will build them intdi bsyscal | . a (see theREADME file in the tarball). While
system call stubs resemble the trap handler wrappers yoie ooProject 1, they are different
in one critical way. Since your kernel must always be readg$pond to any interrupt or trap, it
can potentially use every wrapper during each executiothadlrmust be linked (once) into the
kernel executable. However, the average user programra@s/oke every system call during
the course of its execution. In fact, many user programsatomnly a trivial amount of code.
If you create one huge system call stub file containing the ¢odnvoke every system call, the
linker will happily append the huge .o file &veryuser-level program you build and your “RAM
disk” file system will overflow, probably when we are tryingdoade your project. So don’t do
that.

When
building your stub library, younustmatch the declarations #l0Quser/|ib/inc/syscall.h
in every detail. Otherwise, our test programs will not lirga@st your stub library. If you think
there is a problem with a declaration we have given you, éxplaur thinking to us—don't just
“fix” the declaration.

4 System Call Specifications

4.1 Overview
The system calls provided by the 410 kernel can be brokerfir@@roups, namely

e Life Cycle

e Thread Management
e Memory Management
e Console I/0

e Miscellaneous System Interaction

The following descriptions of system calls use C functiooldeation syntax even though the
actual system call interface, as described in Section ¥fieed in terms of assembly-language
primitives. This means that student teams must write a systl stub library, as described in
Section 3.3, in order to invoke any system calls. This stotaly is a deliverable.

Unless otherwise noted, system calls return zero on suetekan error code less than zero
if something goes wrong.

One system calt,hr ead_f or k, is presented without a C-style declaration. This is bestus
actions performed byhr ead_f or k are outside of the scope of, and manipulate, the C language
runtime environment. You will need to determine for yoursieé correct manner and context for
invokingt hread fork. Itis not an oversight thathread_f ork is “missing” from the system
call prototype include file, and you must not add it!

4

4.2 Life Cycle

This group contains system calls which manage the creatidrnlestruction of tasks and threads.

e int fork(void) - Creates a new task. The new task receives an exact, colvemnof
all memory regions of the invoking task. The new task costarsingle thread which is
a copy of the thread invokinfjor k() except for the return value of the system call. If
fork() succeeds, the invoking thread will receive the ID of the nesk thread and the
newly created thread will receive the value zero.

Errors are reported via a negative return value, in whicle casnew task has been created.

Some kernel implementations reject call§ tw k() which take place while the invoking
task contains more than one thread.

e thread._fork - Creates a new thread in the current task (i.e., the newdhsdhashare all
task resources as described in Section 2).

The invoking thread’s return value %ax is the thread ID of the newly-created thread; the
new thread’s return value is zero. All other registers inrtbe thread will be initialized to
the same values as the corresponding registers in the @adhr

Errors are reported via a negative return value, in whicle ¢as new thread has been
created.

Some kernel versions reject callsftar k() orexec() which take place while the invoking
task contains more than one thread.

e int exec(char *execnane, char **argvec) -

Replaces the program currently running in the invoking tagtk the program stored in
the file nameaxecnane. The argumendr gvec points to a null-terminated vector of null-
terminated string arguments.

The number of strings in the vector and the vector itself gltransported into the memory
of the new task where they will serve as the first and seconanaggts of the the new
program’snai n(), respectively. It is conventional that gvec[0] is the same string as
execnane andar gvec|[1] is the first command line parameter, etc. Some programs will
behave oddly if this convention is not followed.

Reasonable limits may be placed on the number of argumeatta tiser program may pass
to exec(), and the length of each argument.

The kernel does as much validation as possible otkee () request before deallocating
the old program’s resources.

On success, this system call does not return to the invokiogram, since it is no longer
running. If something goes wrong, an integer error codetless zero will be returned.

Some kernel versions reject calls égec() which take place while the invoking task
contains more than one thread.

e void exit(int status) - Terminates execution of the calling thread immediatdly. |

4.3

the invoking thread is the last thread in its task, the kedeelllocates all resources in use
by the task and makes tkeat us parameter available to the parent taskwaat () . If the
parent task is no longer running, the exit status is maddadlaito the kernel-launched
“init” task instead.

If the kernel decides to kill a thread, the effect should be same as if the thread
had invokedexi t (- 1), except that the kernel can generally be expected to disptay
appropriate message on the system console.

Theexit () of one thread, voluntary or involuntary, does not cause #rad! to destroy
any other thread.

int wait(int *status_ptr) - When the last thread of a task cadlsi t (), thest at us
parameter is made available to the “parent task” in the ertegferenced byt at us ptr.

A task’s “parent task” is the task which invokédr k() to create the task.

If no error occurs, the return value @i t () is the thread ID of théirst thread originally
created in exiting taskjot the thread ID of the last thread in that tasleto t () .

Thewai t () system call may be invoked simultaneously by any number iafatis in a
task; exit statuses may be matched to waiting threads in amypathological way. If one

or more threads invokeai t () while there are child tasks which have not yet exited, they
will block until one exits.

Whenever a task has no un-exited child tasks, any pendingwrcalls towai t () will
return an integer error code less than zero.

void taskexit(int status) - Causes all threads of a task to exit. The behavior of
the system call should be as if the invoking thread “exit§1a®., thest at us parameter
becomes the exit status of the task as described above.

The threads must exit “in a timely fashion,” meaning thasitot ok fortask_exit() to
“wait around” for threads to complete very-long-runninguoibounded-time operations.

Thread Management
int gettid() - Returns the thread ID of the invoking thread.

int yield(int tid) - Defers execution of the invoking thread to a time determhine
by the scheduler, in favor of the thread with tDd. If tid is -1, the scheduler may
determine which thread to run next. The only threads whadsedsding should be affected
byyi el d() are the calling thread and the thread that isl d() ed to. If the thread with ID
tid is not runnable, or doesn’t exist, then an integer error desie than zero is returned.
Zero is returned on success.

int deschedul e(int *reject) - Atomically checks the integer pointed to bgj ect
and acts on it. If the integer is non-zero, the call returnmadiately with return value

4.4

4.5

zero. If the integer pointed to byej ect is zero, then the calling thread will not be run by
the scheduler until aeke_r unnabl e() call is made specifying the thread which invoked
deschedul e() .

An integer error code less than zero is returned if rejecbtsarvalid pointer.

This system call isastomicwith respect tarake _r unnabl e() : the process of examining
rej ect and suspending the thread will not be interleaved with angcetion of
make_r unnabl e() specifying the thread callindeschedul e() .

int make_runnabl e(int tid) -Makesthaleschedul e() dthread with IDt i d runnable

by the scheduler. On success, zero is returnedi dfis not the ID of a thread currently
non-runnable due to a call tteschedul e(), then an integer error code less than zero is
returned.

unsi gned int get_ticks(void) - Returns the number of timer ticks which have
occurred since system boot.

int sleep(int ticks) - Deschedules the calling thread until at leastks timer
interrupts have occurred after the call. Returns immeljiatet i cks is zero. Returns
an integer error code less than zerbiitks is negative. Returns zero otherwise.

Memory Management

int new.pages(void *addr, int |en) - Allocates new memory to the invoking task,
starting ataddr and extending fok en bytes.

new_pages() will fail, returning a negative integer error codeaifdr is not page-aligned,
if | enis not a positive integral multiple of the system page sizany portion of the region
already represents memory in the task’s address space, ifetlr memory region would
be too closé to the bottom of the automatic stack region, or if the opagpsystem has
insufficient resources to satisfy the request.

Otherwise, the return code will be zero and the new memoryimihediately be visible
to all threads in the invoking task.

int remove_pages(void *addr) - Deallocates the specified memory region, which must
presently be allocated as the result of a previous calktapages() which specified the
same value odddr . Returns zero if successful or returns a negative integeréacode.

Console I/O

char getchar() - Returns a single character from the character input stréfahe input
stream is empty the thread is descheduled until a charaxtavailable. If some other
thread is descheduled orreadl i ne() orgetchar (), then the calling thread must block

1Two pages is too close. Other values might be too close also.

and wait its turn to access the input stream. Characteregsed by thget char () system
call should not be echoed to the console.

e int readline(int len, char *buf) - Reads the nextline from the console and copies
it into the buffer pointed to byuf . If there is no line of input currently available, the cadjin
thread is descheduled until one is. If some other threadsshazluled on aeadl i ne()
or aget char (), then the calling thread must block and wait its turn to asdhe input
stream. The length of the buffer is indicatedlgn. If the line is smaller than the buffer,
then the complete line including the newline character gexbinto the buffer. If the length
of the line exceeds the length of the buffer, ohén characters should be copied iraf .
However, the newline character which terminatedrtéad| i ne() call should be regarded
as “consumed” from the system input queue even though it wedelivered to the buffer.
Available characters should not be committed ibab until there is a newline character
available, so the user has a chance to backspace over tystakes.

Characters that will be consumed by @ad! i ne() should be echoed to the console as
soon as possible. If there is no outstanding call ¢adl i ne() no characters should
be echoed. Echoed user input may be interleaved with outpaita calls toprint ().
Characters not placed in the buffer should remain availvlether calls ta eadl i ne()
and/orget char () . Some kernel implementations may choose to regard chesagtech
have been echoed to the screen but which have not been platoea user buffer to be
“dedicated” tor eadl i ne() and not available tget char () .

The readline system call returns the number of bytes copiedthe buffer. An integer
error code less than zero is returneduf is not a valid memory address,hif falls in a
read-only memory region of the task, ot #n is “unreasonably” larg8.

e int print(int Ien, char *buf) - Printsl en bytes of memory, starting auf , to the
console. The calling thread should block until all charexcteave been printed to the
console. Output of two concurrepti nt () s should not be intermixed. Ifen is larger
than some reasonable maximum obuff is not a valid memory address, an integer error
code less than zero should be returned.

e int set_termcolor(int color) - Sets the terminal print color for any future output to
the console. Itol or does not specify a valid color, an integer error code less #eso
should be returned. Zero is returned on success.

e int set_cursor_pos(int row, int col) - Setsthe cursor to the locatipnow, col).
If the location is not valid, an integer error code less thams returned. Zero is returned
on success.

e int get_cursor_pos(int *row, int *col) - Writes the current location of the cursor
to the addresses provided as arguments. If the argument®avalid addresses, then an
error code less than zero is returned. Zero is returned aressc

2Deciding on this threshold is easier than it may seem at fistif you feel like you need to ask us for a
clarification you should probably think further.

4.6 Miscellaneous System Interaction

e int |Is(int size, char *buf) - Fills in the user-specified buffer with the names of
executable files stored in the system’s RAM disk “file systeththere is enough room
in the buffer for all of the (null-terminated) file namasd an additional null byte after
the last filename’s terminating null, the system call wiliurea the number of filenames
successfully copied. Otherwise, an error code less thamigaeturned and the contents
of the buffer are undefined. For the curious among you, thesesy call is (very) loosely
modeled on the System §ét dent s() call.

e void halt() - Shuts down the operating system. If the kernel is runnindeursimics,
the simulation will be shut down via a call 8 Mhal t () .

	Introduction
	Overview

	User Execution Environment
	The System Call Interface
	Invocation and Return
	Validation
	System Call Stub Library

	System Call Specifications
	Overview
	Life Cycle
	Thread Management
	Memory Management
	Console I/O
	Miscellaneous System Interaction

