Operating System Structure

Joey Echeverria
joey42+os@gmail.com

December 6, 2004

Carnegie Mellon University: 15-410 Fall 2004

Overview

e Motivations

e Kernel Structures

— Monolithic Kernels
— Open Systems

— Microkernels

— Kernel Extensions
— Exokernels

e Final Thoughts

Carnegie Mellon University: 15-410 Fall 2004

Motivations

e Operating systems have a hard job.

e Operating systems are:

— Abstraction layers

— Resource allocators
— Protection boundaries
— Resource Schedulers
— Complicated

Carnegie Mellon University: 15-410 Fall 2004

Motivations

e Abstraction Layer

— Operating systems present a simplified view of hardware
— Applications see a well defined interface (system calls)

e Resource Allocator

— Operating systems allocate hardware resources to processes
* memory
* network
x disk space
x CPU time
x 1/0O devices

Carnegie Mellon University: 15-410 Fall 2004

Motivations

e Protection Boundaries

— Operating systems protect processes from each other and itself from

process.
— Note: Everyone trusts the kernel.

e Resource Schedulers

— Operating systems schedule access to resources.
— e.g., process scheduling, disk scheduling, etc.

e Complicated

— See Project 3)

Carnegie Mellon University: 15-410 Fall 2004 5

Monolithic Kernels

Apache Mozilla Emacs

I|bc Ilbpthread I|bc Ilbpthread libc |

Y Y Y

CPU Scheduling Interprocess Communication

Networking File System

Ker nel

Virtual Memory
Security >(\
i RN

Carnegie Mellon University: 15-410 Fall 2004

Monolithic Kernels

e You've seen this before.

e The kernel is all in one place with no protection between components.

— See Project 3)

e Applications use a well-defined system call interface to interact with the
kernel.

e Examples: UNIX, Mac OS X, Windows NT/XP, Linux, BSD, i.e., common

Carnegie Mellon University: 15-410 Fall 2004 7

Monolithic Kernels

e Advantages:

— Well understood
— Good performance
— High level of protection between applications

e Disadvantages:

— No protection between kernel components
— Not extensible
— Overall structure is complicated
x Everything is intermixed
x There aren’t clear boundaries between modules

Carnegie Mellon University: 15-410 Fall 2004

Open Systems

J

Carnegie Mellon University: 15-410 Fall 2004

b oo

Mozilla=————® |ippthread

. \ |
s S Apache /Emacs = e
| enp—
T o Interprocess Communication
—_ O
o .— . File System
€= Networking y
& Virtual Mer%

Open Systems

e Applications, libraries, and kernel all sit in the same address space

e Does anyone actually do this craziness?

— MS-DOS

— Mac OS 9 and prior

— Windows ME, 98, 95, 3.1, etc.
— Palm OS

— Some embedded systems

e Used to be very common

Carnegie Mellon University: 15-410 Fall 2004

10

Open Systems

e Advantages:

— Very good performance
— Very extensible

x Undocumented Windows, Schulman et al. 1992

x In the case of Mac OS and Palm OS there’s an extensions industry
— Can work well in practice

e Disadvantages:

— No protection between kernel and/or applications
— Not particularly stable
— Composing extensions can result in unpredictable results

Carnegie Mellon University: 15-410 Fall 2004

11

Microkernels

Mozilla

T lipe Networking
libpthread '
e |
~ Apache Emacs !
_____ libe [Foommmmeeees .Processes : File System
_ libpthread libc irtual Memory,
z T~ | 7 I
& ‘ - \\,’ A —— '
T Y 7 I

g
Interprocess

e

Communication e CPU Schedulmgl

1N/
- A Secunty

M cr oker nel

\—ﬁﬂh

Carnegie Mellon University: 15-410 Fall 2004

12

Microkernels

e Replace the monolithic kernel with a “small, clean, logical” set of
abstractions.

— Tasks and Threads
— Virtual Memory
— Interprocess Communication
e Move the rest of the OS into server processes

e Examples: Mach, Chorus, QNX, GNU/Hurd

e Mixed results: QNX commercially successful in the embedded space,
microkernels are mostly nonexistent elsewhere

Carnegie Mellon University: 15-410 Fall 2004 13

Microkernels

e Advantages:

— Extensible: just add a new server to extend the OS
— “Operating system” agnostic:
x Support of operating system personalities
+x Have a server for each system (Mac, Windows, UNIX)
« All applications can run on the same kernel
x IBM Workplace OS
- one kernel for 0S/2, OS/400, and AIX
- based on Mach 3.0
- failure

Carnegie Mellon University: 15-410 Fall 2004

14

Microkernels

e Advantages:

— Mostly hardware agnostic

x Threads and IPC don’t care about the details of the underlying
hardware.

— Strong security, the operating system is protected even from itself.
— Naturally extended to distributed systems.

Carnegie Mellon University: 15-410 Fall 2004 15

Microkernels

e Disadvantages:
— Performance
x System calls can require a large number of protection mode changes.
+x Mach frequently criticized for its performance.

x 1S this really an issue?
— EXxpensive to re-implement everything using a new model

Carnegie Mellon University: 15-410 Fall 2004

16

Mach

e Started as a project at CMU (based on RIG project from Rochester)

e Plan

1. Proof of concept
— Take BSD 4.1, fix parts like VM, user visible kernel threads, IPC
2. Microkernel and a single-server
— Take the kernel and saw in half
3. Microkernel and multiple servers (FS, paging, network, etc.)
— Servers glued together by OS personality modules which catch syscalls

Carnegie Mellon University: 15-410 Fall 2004 17

Mach

e What actually happened:

1. Proof of concept
— Completed in 1989
— Unix: SMP, kernel threads, 5 architectures
— Commercial deployment: Encore Multimax, Convex Exemplar (SPP-
UX), OSF/1
— Avie Tevanian took this to NeXT: NeXTStep — OS X
2. Microkernel and a single-server
— Completed, deployed to 10’s of machines (everybody graduated)
3. Microkernel and multiple servers (FS, paging, network, etc.)
— Never really completed (everybody graduated)

Carnegie Mellon University: 15-410 Fall 2004 18

Microkernel Performance

e Mach was never aggressively tuned in the desktop/server context.

— Is it fair to compare Mach to monolithic kernels?

e ONX is at least strong enough to be competitive with other real-time
operating systems, such as VxWorks.

e The literature has between 5 and 50 percent performance overhead for
microkernels.

e Summary: Still up in the air.

Carnegie Mellon University: 15-410 Fall 2004 19

GNU Hurd

e Hurd stands for 'Hird of Unix-Replacing Daemons’ and Hird stands for 'Hurd
of Interfaces Representing Depth’

e GNU Hurd is the FSF’s kernel
e Work began in 1990 on the kernel, has run on 10’s of machines

e Ready for mass deployment Real Soon Now™

Carnegie Mellon University: 15-410 Fall 2004 20

Kernel Extensions

Apache Mozilla Emacs
libc libpthread libc libpthread libc |
Custom FS Fast Sockets FS and Sockets

Ker nel

i e e

Carnegie Mellon University: 15-410 Fall 2004

User Ker nel Extensions

Def ault Servi ces

Core Services

21

Kernel Extensions

e Two related ideas: old way and new way

e OIld way:

— System administrator adds a new module to an existing kernel
— This can be hot or may require a reboot: no compiling

— VMS, Windows NT, Linux, BSD, Mac OS X

— Safe? “of course”

Carnegie Mellon University: 15-410 Fall 2004

22

Kernel Extensions

e New way:

— Allow users to download enhancements into the kernel

— This can be done with compiler safety (Spin: Modula-3) or proof-carrying
code (PCQC)

— Spin (University of Washington), Proof-carrying code (CMU)

— Safe? Guaranteed

Carnegie Mellon University: 15-410 Fall 2004 23

Kernel Extensions

e Advantages:

— Extensible, just add a new extension.
— Safe (New way)
— Good performance because everything is in the kernel.

e Disadvantages:

— Rely on compilers, PCC proof checker, head of project, etc., for safety.
— Constrained implementation language on systems like Spin
— The old way doesn’t give safety, but does give extensibility

Carnegie Mellon University: 15-410 Fall 2004

24

Pause

e SO far we've really just moved things around
e There is still a VM system, file system, IPC, etc.

e Why should I trust the kernel to give me a filesystem that is good for me?

— Best performance for small, big, mutable, and static files.
— The right ACL model.

e Let's try something different.

Carnegie Mellon University: 15-410 Fall 2004

25

Exokernels

Mozilla Emacs

Fast Sockets
VM
7/

-

-

I

I

-

=T ~ TLB
I Protection

CPU Scheduler

Exokernel

Carnegie Mellon University: 15-410 Fall 2004

26

Exokernels

e Basic idea: Take the operating system out of the kernel and put it into
libraries

e Why? Applications know better how to manage active hardware resources
than kernel writers do.

e Is this safe? Sure, the Exokernel’s job is to provide safe, multiplexed access
to the hardware.

e This separates the security and protection from the management of
resources.

Carnegie Mellon University: 15-410 Fall 2004 27

Exokernels: VM Example

e There is no fork()
e There is no exec()
e There is no automatic stack growth

e Exokernel keeps track of physical memory pages and assigns them to an
application on request.

e Application makes a call into the Exokernel and asks for a physical memory
page

e Exokernel manages hardware level of virtual memory.

Carnegie Mellon University: 15-410 Fall 2004 28

Exokernels: VM Example

o fork():

— Application asks the kernel for a bunch of pages

— Application copies its pages into the new ones

— The point is that the kernel doesn’t provide this service

— Alternative: mark pages copy on write except for the pages that fork() is
using.

— Basically, the fork() implementation can choose how to handle these
details.

Carnegie Mellon University: 15-410 Fall 2004 29

Exokernels: VM Example

e To revoke a virtual to physical mapping, the Exokernel asks for a physical
page victim

e If an application does not cooperate, the Exokernel can take a physical page
by force, writing it out to disk

e The application is free to manage its virtual to physical mappings using any
data structure it wants.

Carnegie Mellon University: 15-410 Fall 2004 30

Exokernels

e Example: Cheetah Web Server

— Web server uses custom, mutually-optimized FS and protocol stack.
— In a typical web server the data has to go from:
1. the disk to kernel memory
2. kernel memory to user memory
3. user memory back to kernel memory
4. kernel memory to the network device
— In an exokernel, the application can have the data go straight from disk to

the network interface.

Carnegie Mellon University: 15-410 Fall 2004 31

Exokernels

Processor

2\ s

Memory

System Bus
1 ; : 4

Disk Ethernet

Carnegie Mellon University: 15-410 Fall 2004

32

Exokernels

e Traditional kernel and web server:

1. read() - copy from disk to kernel buffer
2. read() - copy from kernel buffer to user buffer
3. send() - user buffer to kernel buffer
— send() - data is check-summed
4. send() - kernel buffer to device memory

Carnegie Mellon University: 15-410 Fall 2004

33

Exokernels

e Exokernel and Cheetah:

— Copy from disk to memory

— Copy from memory to network

— “File system” doesn’t store files, stores packet-body streams

— Header is finished when the data is sent out

— This saves the system from recomputing a checksum, saves processing

power
Traditional Packet Cheeta Packet
Construction Construction
Packets: | IP| TCP| DATA | | IP| TCP| DATA |
Disk: DATA DATAV/

Carnegie Mellon University: 15-410 Fall 2004 34

Exokernels

8000+ - —
5 - == NCSA/BSD
E == Harvest/BSD
5 8000+ — Socket/BSD
% == Socket/Xok
- = Cheetah
o
o
g 4000
5
o
=
S
E 2000
=
|—.
0- _—:i:I_
0 Byte 100 Byte 1 KByte 10 KByte 100 KByte

HTTP page size

Carnegie Mellon University: 15-410 Fall 2004

Exokernels

e Advantages:

— Extensible: just add a new libOS
— Fast: Applications get direct access to hardware
— Safe: Exokernel allows safe sharing of resources

e Disadvantages:

— Still complicated, just moving it up into user space libraries

— Extensible in theory, in practice need to change libPosix which is a lot like
changing a monolithic kernel.

— EXpensive to rewrite existing kernels

— send_file(2) - Why change when you can steal?

— Requires policy, despite assertions to the contrary

Carnegie Mellon University: 15-410 Fall 2004 36

Final Thoughts

e Operating systems are complicated.
e Structure does matter.

e Many alternatives, but monolithic with a little bit of kernel extensions thrown
In are the most common.

e Why did none of the other structures win?

e Why should | re-implement my kernel when | can just add the functionality
that gave you better performance numbers? (see send_file(2)).

Carnegie Mellon University: 15-410 Fall 2004 37

