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Motivations

• Operating systems have a hard job.

• Operating systems are:

– Abstraction layers
– Resource allocators
– Protection boundaries
– Resource Schedulers
– Complicated
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Motivations

• Abstraction Layer

– Operating systems present a simplified view of hardware
– Applications see a well defined interface (system calls)

• Resource Allocator

– Operating systems allocate hardware resources to processes
∗ memory
∗ network
∗ disk space
∗ CPU time
∗ I/O devices
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Motivations

• Protection Boundaries

– Operating systems protect processes from each other and itself from
process.

– Note: Everyone trusts the kernel.

• Resource Schedulers

– Operating systems schedule access to resources.
– e.g., process scheduling, disk scheduling, etc.

• Complicated

– See Project 3 :)
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Monolithic Kernels
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Monolithic Kernels

• You’ve seen this before.

• The kernel is all in one place with no protection between components.

– See Project 3 :)

• Applications use a well-defined system call interface to interact with the
kernel.

• Examples: UNIX, Mac OS X, Windows NT/XP, Linux, BSD, i.e., common
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Monolithic Kernels

• Advantages:

– Well understood
– Good performance
– High level of protection between applications

• Disadvantages:

– No protection between kernel components
– Not extensible
– Overall structure is complicated
∗ Everything is intermixed
∗ There aren’t clear boundaries between modules
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Open Systems
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Open Systems

• Applications, libraries, and kernel all sit in the same address space

• Does anyone actually do this craziness?

– MS-DOS
– Mac OS 9 and prior
– Windows ME, 98, 95, 3.1, etc.
– Palm OS
– Some embedded systems

• Used to be very common
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Open Systems

• Advantages:

– Very good performance
– Very extensible
∗ Undocumented Windows, Schulman et al. 1992
∗ In the case of Mac OS and Palm OS there’s an extensions industry

– Can work well in practice

• Disadvantages:

– No protection between kernel and/or applications
– Not particularly stable
– Composing extensions can result in unpredictable results
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Microkernels
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Microkernels

• Replace the monolithic kernel with a “small, clean, logical” set of
abstractions.

– Tasks and Threads
– Virtual Memory
– Interprocess Communication

• Move the rest of the OS into server processes

• Examples: Mach, Chorus, QNX, GNU/Hurd

• Mixed results: QNX commercially successful in the embedded space,
microkernels are mostly nonexistent elsewhere
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Microkernels

• Advantages:

– Extensible: just add a new server to extend the OS
– “Operating system” agnostic:
∗ Support of operating system personalities
∗ Have a server for each system (Mac, Windows, UNIX)
∗ All applications can run on the same kernel
∗ IBM Workplace OS
· one kernel for OS/2, OS/400, and AIX
· based on Mach 3.0
· failure
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Microkernels

• Advantages:

– Mostly hardware agnostic
∗ Threads and IPC don’t care about the details of the underlying

hardware.
– Strong security, the operating system is protected even from itself.
– Naturally extended to distributed systems.
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Microkernels

• Disadvantages:

– Performance
∗ System calls can require a large number of protection mode changes.
∗ Mach frequently criticized for its performance.
∗ Is this really an issue?

– Expensive to re-implement everything using a new model
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Mach

• Started as a project at CMU (based on RIG project from Rochester)

• Plan

1. Proof of concept
– Take BSD 4.1, fix parts like VM, user visible kernel threads, IPC

2. Microkernel and a single-server
– Take the kernel and saw in half

3. Microkernel and multiple servers (FS, paging, network, etc.)
– Servers glued together by OS personality modules which catch syscalls
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Mach

• What actually happened:

1. Proof of concept
– Completed in 1989
– Unix: SMP, kernel threads, 5 architectures
– Commercial deployment: Encore Multimax, Convex Exemplar (SPP-

UX), OSF/1
– Avie Tevanian took this to NeXT: NeXTStep → OS X

2. Microkernel and a single-server
– Completed, deployed to 10’s of machines (everybody graduated)

3. Microkernel and multiple servers (FS, paging, network, etc.)
– Never really completed (everybody graduated)
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Microkernel Performance

• Mach was never aggressively tuned in the desktop/server context.

– Is it fair to compare Mach to monolithic kernels?

• QNX is at least strong enough to be competitive with other real-time
operating systems, such as VxWorks.

• The literature has between 5 and 50 percent performance overhead for
microkernels.

• Summary: Still up in the air.
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GNU Hurd

• Hurd stands for ’Hird of Unix-Replacing Daemons’ and Hird stands for ’Hurd
of Interfaces Representing Depth’

• GNU Hurd is the FSF’s kernel

• Work began in 1990 on the kernel, has run on 10’s of machines

• Ready for mass deployment Real Soon Now™
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Kernel Extensions
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Kernel Extensions

• Two related ideas: old way and new way

• Old way:

– System administrator adds a new module to an existing kernel
– This can be hot or may require a reboot: no compiling
– VMS, Windows NT, Linux, BSD, Mac OS X
– Safe? “of course”
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Kernel Extensions

• New way:

– Allow users to download enhancements into the kernel
– This can be done with compiler safety (Spin: Modula-3) or proof-carrying

code (PCC)
– Spin (University of Washington), Proof-carrying code (CMU)
– Safe? Guaranteed
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Kernel Extensions

• Advantages:

– Extensible, just add a new extension.
– Safe (New way)
– Good performance because everything is in the kernel.

• Disadvantages:

– Rely on compilers, PCC proof checker, head of project, etc., for safety.
– Constrained implementation language on systems like Spin
– The old way doesn’t give safety, but does give extensibility
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Pause

• So far we’ve really just moved things around

• There is still a VM system, file system, IPC, etc.

• Why should I trust the kernel to give me a filesystem that is good for me?

– Best performance for small, big, mutable, and static files.
– The right ACL model.

• Let’s try something different.
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Exokernels
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Exokernels

• Basic idea: Take the operating system out of the kernel and put it into
libraries

• Why? Applications know better how to manage active hardware resources
than kernel writers do.

• Is this safe? Sure, the Exokernel’s job is to provide safe, multiplexed access
to the hardware.

• This separates the security and protection from the management of
resources.
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Exokernels: VM Example

• There is no fork()

• There is no exec()

• There is no automatic stack growth

• Exokernel keeps track of physical memory pages and assigns them to an
application on request.

• Application makes a call into the Exokernel and asks for a physical memory
page

• Exokernel manages hardware level of virtual memory.
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Exokernels: VM Example

• fork():

– Application asks the kernel for a bunch of pages
– Application copies its pages into the new ones
– The point is that the kernel doesn’t provide this service
– Alternative: mark pages copy on write except for the pages that fork() is

using.
– Basically, the fork() implementation can choose how to handle these

details.
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Exokernels: VM Example

• To revoke a virtual to physical mapping, the Exokernel asks for a physical
page victim

• If an application does not cooperate, the Exokernel can take a physical page
by force, writing it out to disk

• The application is free to manage its virtual to physical mappings using any
data structure it wants.

Carnegie Mellon University: 15-410 Fall 2004 30



Exokernels

• Example: Cheetah Web Server

– Web server uses custom, mutually-optimized FS and protocol stack.
– In a typical web server the data has to go from:

1. the disk to kernel memory
2. kernel memory to user memory
3. user memory back to kernel memory
4. kernel memory to the network device

– In an exokernel, the application can have the data go straight from disk to
the network interface.
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Exokernels
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Exokernels

• Traditional kernel and web server:

1. read() - copy from disk to kernel buffer
2. read() - copy from kernel buffer to user buffer
3. send() - user buffer to kernel buffer

– send() - data is check-summed
4. send() - kernel buffer to device memory
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Exokernels

• Exokernel and Cheetah:

– Copy from disk to memory
– Copy from memory to network
– “File system” doesn’t store files, stores packet-body streams
– Header is finished when the data is sent out
– This saves the system from recomputing a checksum, saves processing

power
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Exokernels
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Exokernels

• Advantages:

– Extensible: just add a new libOS
– Fast: Applications get direct access to hardware
– Safe: Exokernel allows safe sharing of resources

• Disadvantages:

– Still complicated, just moving it up into user space libraries
– Extensible in theory, in practice need to change libPosix which is a lot like

changing a monolithic kernel.
– Expensive to rewrite existing kernels
– send file(2) - Why change when you can steal?
– Requires policy, despite assertions to the contrary
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Final Thoughts

• Operating systems are complicated.

• Structure does matter.

• Many alternatives, but monolithic with a little bit of kernel extensions thrown
in are the most common.

• Why did none of the other structures win?

• Why should I re-implement my kernel when I can just add the functionality
that gave you better performance numbers? (see send file(2)).
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