
Operating System Structure

Joey Echeverria
joey42+os@gmail.com

December 6, 2004

Carnegie Mellon University: 15-410 Fall 2004



Overview

• Motivations

• Kernel Structures

– Monolithic Kernels
– Open Systems
– Microkernels
– Kernel Extensions
– Exokernels

• Final Thoughts

Carnegie Mellon University: 15-410 Fall 2004 2



Motivations

• Operating systems have a hard job.

• Operating systems are:

– Abstraction layers
– Resource allocators
– Protection boundaries
– Resource Schedulers
– Complicated

Carnegie Mellon University: 15-410 Fall 2004 3



Motivations

• Abstraction Layer

– Operating systems present a simplified view of hardware
– Applications see a well defined interface (system calls)

• Resource Allocator

– Operating systems allocate hardware resources to processes
∗ memory
∗ network
∗ disk space
∗ CPU time
∗ I/O devices

Carnegie Mellon University: 15-410 Fall 2004 4



Motivations

• Protection Boundaries

– Operating systems protect processes from each other and itself from
process.

– Note: Everyone trusts the kernel.

• Resource Schedulers

– Operating systems schedule access to resources.
– e.g., process scheduling, disk scheduling, etc.

• Complicated

– See Project 3 :)

Carnegie Mellon University: 15-410 Fall 2004 5



Monolithic Kernels

Security

libc libpthread libc libpthread

MozillaApache Emacs

libc

CPU Scheduling

K
e
r
n
e
l

Networking File System
Virtual Memory

Interprocess Communication

DiskCPU MemoryNetwork

Carnegie Mellon University: 15-410 Fall 2004 6



Monolithic Kernels

• You’ve seen this before.

• The kernel is all in one place with no protection between components.

– See Project 3 :)

• Applications use a well-defined system call interface to interact with the
kernel.

• Examples: UNIX, Mac OS X, Windows NT/XP, Linux, BSD, i.e., common

Carnegie Mellon University: 15-410 Fall 2004 7



Monolithic Kernels

• Advantages:

– Well understood
– Good performance
– High level of protection between applications

• Disadvantages:

– No protection between kernel components
– Not extensible
– Overall structure is complicated
∗ Everything is intermixed
∗ There aren’t clear boundaries between modules

Carnegie Mellon University: 15-410 Fall 2004 8



Open Systems

Apache Emacs libc

libpthreadMozilla

Interprocess Communication

K
e
r
n
e
l
 
a
n
d

File System

Virtual Memory

Networking

A
p
p
l
i
c
a
t
i
o
n
s

DiskMemoryNetworkCPU

Carnegie Mellon University: 15-410 Fall 2004 9



Open Systems

• Applications, libraries, and kernel all sit in the same address space

• Does anyone actually do this craziness?

– MS-DOS
– Mac OS 9 and prior
– Windows ME, 98, 95, 3.1, etc.
– Palm OS
– Some embedded systems

• Used to be very common

Carnegie Mellon University: 15-410 Fall 2004 10



Open Systems

• Advantages:

– Very good performance
– Very extensible
∗ Undocumented Windows, Schulman et al. 1992
∗ In the case of Mac OS and Palm OS there’s an extensions industry

– Can work well in practice

• Disadvantages:

– No protection between kernel and/or applications
– Not particularly stable
– Composing extensions can result in unpredictable results

Carnegie Mellon University: 15-410 Fall 2004 11



Microkernels

Virtual Memory

DiskCPU Network Memory

Apache

libpthread

Mozilla

M
i
c
r
o
k
e
r
n
e
l

libc

libc Processes

Networking

File System

Emacs

libclibpthread

Interprocess
CPU Scheduling SecurityCommunication

Carnegie Mellon University: 15-410 Fall 2004 12



Microkernels

• Replace the monolithic kernel with a “small, clean, logical” set of
abstractions.

– Tasks and Threads
– Virtual Memory
– Interprocess Communication

• Move the rest of the OS into server processes

• Examples: Mach, Chorus, QNX, GNU/Hurd

• Mixed results: QNX commercially successful in the embedded space,
microkernels are mostly nonexistent elsewhere

Carnegie Mellon University: 15-410 Fall 2004 13



Microkernels

• Advantages:

– Extensible: just add a new server to extend the OS
– “Operating system” agnostic:
∗ Support of operating system personalities
∗ Have a server for each system (Mac, Windows, UNIX)
∗ All applications can run on the same kernel
∗ IBM Workplace OS
· one kernel for OS/2, OS/400, and AIX
· based on Mach 3.0
· failure

Carnegie Mellon University: 15-410 Fall 2004 14



Microkernels

• Advantages:

– Mostly hardware agnostic
∗ Threads and IPC don’t care about the details of the underlying

hardware.
– Strong security, the operating system is protected even from itself.
– Naturally extended to distributed systems.

Carnegie Mellon University: 15-410 Fall 2004 15



Microkernels

• Disadvantages:

– Performance
∗ System calls can require a large number of protection mode changes.
∗ Mach frequently criticized for its performance.
∗ Is this really an issue?

– Expensive to re-implement everything using a new model

Carnegie Mellon University: 15-410 Fall 2004 16



Mach

• Started as a project at CMU (based on RIG project from Rochester)

• Plan

1. Proof of concept
– Take BSD 4.1, fix parts like VM, user visible kernel threads, IPC

2. Microkernel and a single-server
– Take the kernel and saw in half

3. Microkernel and multiple servers (FS, paging, network, etc.)
– Servers glued together by OS personality modules which catch syscalls

Carnegie Mellon University: 15-410 Fall 2004 17



Mach

• What actually happened:

1. Proof of concept
– Completed in 1989
– Unix: SMP, kernel threads, 5 architectures
– Commercial deployment: Encore Multimax, Convex Exemplar (SPP-

UX), OSF/1
– Avie Tevanian took this to NeXT: NeXTStep → OS X

2. Microkernel and a single-server
– Completed, deployed to 10’s of machines (everybody graduated)

3. Microkernel and multiple servers (FS, paging, network, etc.)
– Never really completed (everybody graduated)

Carnegie Mellon University: 15-410 Fall 2004 18



Microkernel Performance

• Mach was never aggressively tuned in the desktop/server context.

– Is it fair to compare Mach to monolithic kernels?

• QNX is at least strong enough to be competitive with other real-time
operating systems, such as VxWorks.

• The literature has between 5 and 50 percent performance overhead for
microkernels.

• Summary: Still up in the air.

Carnegie Mellon University: 15-410 Fall 2004 19



GNU Hurd

• Hurd stands for ’Hird of Unix-Replacing Daemons’ and Hird stands for ’Hurd
of Interfaces Representing Depth’

• GNU Hurd is the FSF’s kernel

• Work began in 1990 on the kernel, has run on 10’s of machines

• Ready for mass deployment Real Soon Now™

Carnegie Mellon University: 15-410 Fall 2004 20



Kernel Extensions

User Kernel Extensions

Core Services

Default ServicesNetworking

Fast Sockets

VM

Custom FS

CPU Scheduler

File System

FS and Sockets

SecurityIPC

libc

Apache

libpthread

Mozilla

libc libpthread libc

Emacs

CPU Memory Network Disk

K
e
r
n
e
l

Carnegie Mellon University: 15-410 Fall 2004 21



Kernel Extensions

• Two related ideas: old way and new way

• Old way:

– System administrator adds a new module to an existing kernel
– This can be hot or may require a reboot: no compiling
– VMS, Windows NT, Linux, BSD, Mac OS X
– Safe? “of course”

Carnegie Mellon University: 15-410 Fall 2004 22



Kernel Extensions

• New way:

– Allow users to download enhancements into the kernel
– This can be done with compiler safety (Spin: Modula-3) or proof-carrying

code (PCC)
– Spin (University of Washington), Proof-carrying code (CMU)
– Safe? Guaranteed

Carnegie Mellon University: 15-410 Fall 2004 23



Kernel Extensions

• Advantages:

– Extensible, just add a new extension.
– Safe (New way)
– Good performance because everything is in the kernel.

• Disadvantages:

– Rely on compilers, PCC proof checker, head of project, etc., for safety.
– Constrained implementation language on systems like Spin
– The old way doesn’t give safety, but does give extensibility

Carnegie Mellon University: 15-410 Fall 2004 24



Pause

• So far we’ve really just moved things around

• There is still a VM system, file system, IPC, etc.

• Why should I trust the kernel to give me a filesystem that is good for me?

– Best performance for small, big, mutable, and static files.
– The right ACL model.

• Let’s try something different.

Carnegie Mellon University: 15-410 Fall 2004 25



Exokernels

Mozilla
E

xo
ke

rn
el

Protection

FS
Fast Sockets

VM

Apache

Fast Sockets
VM

Emacs

libPosix

TLB

DiskCPU Memory

CPU Scheduler

Network

Carnegie Mellon University: 15-410 Fall 2004 26



Exokernels

• Basic idea: Take the operating system out of the kernel and put it into
libraries

• Why? Applications know better how to manage active hardware resources
than kernel writers do.

• Is this safe? Sure, the Exokernel’s job is to provide safe, multiplexed access
to the hardware.

• This separates the security and protection from the management of
resources.

Carnegie Mellon University: 15-410 Fall 2004 27



Exokernels: VM Example

• There is no fork()

• There is no exec()

• There is no automatic stack growth

• Exokernel keeps track of physical memory pages and assigns them to an
application on request.

• Application makes a call into the Exokernel and asks for a physical memory
page

• Exokernel manages hardware level of virtual memory.

Carnegie Mellon University: 15-410 Fall 2004 28



Exokernels: VM Example

• fork():

– Application asks the kernel for a bunch of pages
– Application copies its pages into the new ones
– The point is that the kernel doesn’t provide this service
– Alternative: mark pages copy on write except for the pages that fork() is

using.
– Basically, the fork() implementation can choose how to handle these

details.

Carnegie Mellon University: 15-410 Fall 2004 29



Exokernels: VM Example

• To revoke a virtual to physical mapping, the Exokernel asks for a physical
page victim

• If an application does not cooperate, the Exokernel can take a physical page
by force, writing it out to disk

• The application is free to manage its virtual to physical mappings using any
data structure it wants.

Carnegie Mellon University: 15-410 Fall 2004 30



Exokernels

• Example: Cheetah Web Server

– Web server uses custom, mutually-optimized FS and protocol stack.
– In a typical web server the data has to go from:

1. the disk to kernel memory
2. kernel memory to user memory
3. user memory back to kernel memory
4. kernel memory to the network device

– In an exokernel, the application can have the data go straight from disk to
the network interface.

Carnegie Mellon University: 15-410 Fall 2004 31



Exokernels

EthernetDisk

Memory

1

2 3

4

System Bus

Processor

Carnegie Mellon University: 15-410 Fall 2004 32



Exokernels

• Traditional kernel and web server:

1. read() - copy from disk to kernel buffer
2. read() - copy from kernel buffer to user buffer
3. send() - user buffer to kernel buffer

– send() - data is check-summed
4. send() - kernel buffer to device memory

Carnegie Mellon University: 15-410 Fall 2004 33



Exokernels

• Exokernel and Cheetah:

– Copy from disk to memory
– Copy from memory to network
– “File system” doesn’t store files, stores packet-body streams
– Header is finished when the data is sent out
– This saves the system from recomputing a checksum, saves processing

power

Disk:

IP TCP DATA IP TCP DATA

DATADATA

Traditional Packet
Construction

Cheeta Packet
Construction

Packets:

Carnegie Mellon University: 15-410 Fall 2004 34



Exokernels

Carnegie Mellon University: 15-410 Fall 2004 35



Exokernels

• Advantages:

– Extensible: just add a new libOS
– Fast: Applications get direct access to hardware
– Safe: Exokernel allows safe sharing of resources

• Disadvantages:

– Still complicated, just moving it up into user space libraries
– Extensible in theory, in practice need to change libPosix which is a lot like

changing a monolithic kernel.
– Expensive to rewrite existing kernels
– send file(2) - Why change when you can steal?
– Requires policy, despite assertions to the contrary

Carnegie Mellon University: 15-410 Fall 2004 36



Final Thoughts

• Operating systems are complicated.

• Structure does matter.

• Many alternatives, but monolithic with a little bit of kernel extensions thrown
in are the most common.

• Why did none of the other structures win?

• Why should I re-implement my kernel when I can just add the functionality
that gave you better performance numbers? (see send file(2)).

Carnegie Mellon University: 15-410 Fall 2004 37


