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Disk maintenance applications

• Lots of disk maintenance apps
• data protection (backup)
• storage optimization (defrag, load bal.)
• caching (write-backs)

• Important for system robustness
• Background activities

• should eventually complete
• ideally without interfering with primary apps
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Current approaches

• Implement maintenance application as 
foreground application
• competes for bandwidth or off-hours only

Client 
workload

Backup

throughput MB/s
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Current approaches

• Trickle maintenance activity periodically
• lost opportunities due to inadequate 

scheduling decisions

Client 
workload

Cache write-
back

throughput MB/s
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Real support for background applications

• Push maintenance activities in the 
background
• priorities and explicit support for them

• APIs allow application expressiveness
• Storage subsystem does the scheduling

• using idle time, if there is any
• using otherwise-wasted rotational latency in a 

busy system
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Outline

• Motivation and overview
• The freeblock subsystem
• Background application interfaces
• Example applications
• Conclusions
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The freeblock subsystem

• Disk scheduling subsystem supporting new 
APIs with explicit background requests

• Finds time for background activities
• by detecting idle time (short and long bursts)
• by utilizing otherwise-wasted rotational latency 

in a busy system
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After reading blue sector

After BLUE read
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Red request scheduled next

After BLUE read
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Seek to Red’s track

After BLUE read Seek for RED
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Wait for Red sector to reach head

After BLUE read Seek for RED Rotational latency
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Read Red sector

After BLUE read Seek for RED Rotational latency After RED read
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Traditional service time components

• Rotational latency is wasted time

After BLUE read Seek for RED Rotational latency After RED read
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Rotational latency gap utilization

After BLUE read
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Seek to Third track

After BLUE read Seek to Third

SEEK
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Free transfer

After BLUE read Seek to Third Free transfer

SEEK FREE TRANSFER
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Seek to Red’s track

After BLUE read Seek to Third Seek to REDFree transfer

SEEKSEEK FREE TRANSFER
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Read Red sector

After BLUE read Seek to Third Seek to RED After RED readFree transfer

SEEKSEEK FREE TRANSFER
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Steady background I/O progress
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The freeblock subsystem (cont…)

• Implemented in FreeBSD
• Efficient scheduling

• low CPU and memory utilizations

• Minimal impact on foreground workloads
• < 2%

• See refs for more details
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Outline

• Motivation and overview
• The freeblock subsystem
• Background application interfaces
• Example applications
• Conclusions
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Application programming interface (API) goals

• Work exposed but done opportunistically
• all disk accesses are asynchronous 

• Minimized memory-induced constraints
• late binding of memory buffers 
• late locking of memory buffers

• “Block size” can be application-specific
• Support for speculative tasks
• Support for rate control
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API description: task registration

fb_read (addr_range, blksize,…)

fb_write (addr_range, blksize,…)

Foreground Background

foreground scheduler background scheduler

   application



Eno Thereska    November 2004http://www.pdl.cmu.edu/ 24

API description: task completion

callback_fn (addr, buffer, flag, …)

Foreground Background

foreground scheduler background scheduler

   application
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API description: late locking of buffers 

buffer = getbuffer_fn (addr, …)

Foreground Background

foreground scheduler background scheduler

   application
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API description: aborting/promoting tasks

fb_abort (addr_range, …)

fb_promote (addr_range, …)

Foreground Background

foreground scheduler background scheduler

   application
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Complete API
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Designing disk maintenance applications

• APIs talk in terms of logical blocks (LBNs)
• Some applications need structured version

• as presented by file system or database

• Example consistency issues
• application wants to read file “foo”
• registers task for inode’s blocks
• by time blocks read, file may not exist anymore!
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• Application does not care about structure
• scrubbing, data migration, array reconstruction

• Coordinate with file system/database
• cache write-backs, LFS cleaner, index 

generation

• Utilize snapshots
• backup, background fsck

Designing disk maintenance applications
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Outline

• Motivation and overview

• The freeblock subsystem

• Background application interfaces
• Example applications
• Conclusions
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Example #1: Physical backup

• Backup done using snapshots

backup application

freeblock subsystem

snapshot subsystem (in FS)

getblks()
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Example #1: Physical backup

• Experimental setup
• 18 GB Seagate Cheetah 36ES
• FreeBSD in-kernel implementation
• PIII with 384MB of RAM
• 3 benchmarks used: Synthetic, TPC-C, Postmark

• snapshot includes 12GB of disk

• GOAL: read whole snapshot for free
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Backup completed for free
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Example #2: Cache write-backs

• Must flush dirty buffers
• for space reclamation
• for persistence (if memory is not NVRAM)

• Simple cache manager extensions
• fb_write(dirty_buffer,…)
• getbuffer_fn(dirty_buffer,…)
• fb_promote(dirty_buffer,…)
• fb_abort(dirty_buffer,…)

when blocks become dirty

when flush is 
forced
when block dies in cache

calling back to lock
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Example #2: Cache write-backs

• Experimental setup
• 18 GB Seagate Cheetah 36ES
• PIII with 384MB of RAM
• controlled experiments with synthetic workload
• benchmarks (same as used before) in FreeBSD
• syncer daemon wakes up every 1 sec and 

flushes entries that have been dirty > 30secs

• GOAL: write back dirty buffers for free



Eno Thereska    November 2004http://www.pdl.cmu.edu/ 36

Foreground read:write has impact

0

20

40

60

80

100

0 1:
2

1:1 2:1

read-write ratio

%
 d

irt
y 

bu
ffe

rs
 c

le
an

ed
 fo

r 
fr

ee

0

20

40

60

80

100

0 1:2 1:1 2:1%
 im

pr
ov

em
en

t i
n 

av
g.

 r
es

p.
 ti

m
e

read-write ratio



Eno Thereska    November 2004http://www.pdl.cmu.edu/ 37

95% of NVRAM cleaned for free
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10-20% improvement in overall perf.
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Example #3: Layout reorganizer

• Layout reorganization improves 
access latencies
• defragmentation is a type of reorganization
• typical example of background activity

• Our experiment:
• disk used is 18GB
• we want to defrag up to 20% of it
• goal: defrag for free
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Disk Layout Reorganized for Free!
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Other maintenance applications

• Virus scanner
• LFS cleaner
• Disk scrubber
• Data mining
• Data migration
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Summary

• Framework for building background 
storage applications

• Asynchronous interfaces
• applications describe what they need
• storage subsystem satisfies their needs

• Works well for real applications

http://www.pdl.cmu.edu/Freeblock/


