
PARALLEL DATA LABORATORY

Carnegie Mellon University

A framework for implementing IO-bound
maintenance applications

Eno Thereska

Eno Thereska November 2004http://www.pdl.cmu.edu/ 2

Disk maintenance applications

• Lots of disk maintenance apps
• data protection (backup)
• storage optimization (defrag, load bal.)
• caching (write-backs)

• Important for system robustness
• Background activities

• should eventually complete
• ideally without interfering with primary apps

Eno Thereska November 2004http://www.pdl.cmu.edu/ 3

Current approaches

• Implement maintenance application as
foreground application
• competes for bandwidth or off-hours only

Client
workload

Backup

throughput MB/s

Eno Thereska November 2004http://www.pdl.cmu.edu/ 4

Current approaches

• Trickle maintenance activity periodically
• lost opportunities due to inadequate

scheduling decisions

Client
workload

Cache write-
back

throughput MB/s

Eno Thereska November 2004http://www.pdl.cmu.edu/ 5

Real support for background applications

• Push maintenance activities in the
background
• priorities and explicit support for them

• APIs allow application expressiveness
• Storage subsystem does the scheduling

• using idle time, if there is any
• using otherwise-wasted rotational latency in a

busy system

Eno Thereska November 2004http://www.pdl.cmu.edu/ 6

Outline

• Motivation and overview
• The freeblock subsystem
• Background application interfaces
• Example applications
• Conclusions

Eno Thereska November 2004http://www.pdl.cmu.edu/ 7

The freeblock subsystem

• Disk scheduling subsystem supporting new
APIs with explicit background requests

• Finds time for background activities
• by detecting idle time (short and long bursts)
• by utilizing otherwise-wasted rotational latency

in a busy system

Eno Thereska November 2004http://www.pdl.cmu.edu/ 8

After reading blue sector

After BLUE read

Eno Thereska November 2004http://www.pdl.cmu.edu/ 9

Red request scheduled next

After BLUE read

Eno Thereska November 2004http://www.pdl.cmu.edu/ 10

Seek to Red’s track

After BLUE read Seek for RED

Eno Thereska November 2004http://www.pdl.cmu.edu/ 11

Wait for Red sector to reach head

After BLUE read Seek for RED Rotational latency

Eno Thereska November 2004http://www.pdl.cmu.edu/ 12

Read Red sector

After BLUE read Seek for RED Rotational latency After RED read

Eno Thereska November 2004http://www.pdl.cmu.edu/ 13

Traditional service time components

• Rotational latency is wasted time

After BLUE read Seek for RED Rotational latency After RED read

Eno Thereska November 2004http://www.pdl.cmu.edu/ 14

Rotational latency gap utilization

After BLUE read

Eno Thereska November 2004http://www.pdl.cmu.edu/ 15

Seek to Third track

After BLUE read Seek to Third

SEEK

Eno Thereska November 2004http://www.pdl.cmu.edu/ 16

Free transfer

After BLUE read Seek to Third Free transfer

SEEK FREE TRANSFER

Eno Thereska November 2004http://www.pdl.cmu.edu/ 17

Seek to Red’s track

After BLUE read Seek to Third Seek to REDFree transfer

SEEKSEEK FREE TRANSFER

Eno Thereska November 2004http://www.pdl.cmu.edu/ 18

Read Red sector

After BLUE read Seek to Third Seek to RED After RED readFree transfer

SEEKSEEK FREE TRANSFER

Eno Thereska November 2004http://www.pdl.cmu.edu/ 19

Steady background I/O progress

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100
% disk utilization by foreground (random 4KB) reads/writes

“F
re

e”
 M

B
/s

from idle time from rotational gaps

Eno Thereska November 2004http://www.pdl.cmu.edu/ 20

The freeblock subsystem (cont…)

• Implemented in FreeBSD
• Efficient scheduling

• low CPU and memory utilizations

• Minimal impact on foreground workloads
• < 2%

• See refs for more details

Eno Thereska November 2004http://www.pdl.cmu.edu/ 21

Outline

• Motivation and overview
• The freeblock subsystem
• Background application interfaces
• Example applications
• Conclusions

Eno Thereska November 2004http://www.pdl.cmu.edu/ 22

Application programming interface (API) goals

• Work exposed but done opportunistically
• all disk accesses are asynchronous

• Minimized memory-induced constraints
• late binding of memory buffers
• late locking of memory buffers

• “Block size” can be application-specific
• Support for speculative tasks
• Support for rate control

Eno Thereska November 2004http://www.pdl.cmu.edu/ 23

API description: task registration

fb_read (addr_range, blksize,…)

fb_write (addr_range, blksize,…)

Foreground Background

foreground scheduler background scheduler

 application

Eno Thereska November 2004http://www.pdl.cmu.edu/ 24

API description: task completion

callback_fn (addr, buffer, flag, …)

Foreground Background

foreground scheduler background scheduler

 application

Eno Thereska November 2004http://www.pdl.cmu.edu/ 25

API description: late locking of buffers

buffer = getbuffer_fn (addr, …)

Foreground Background

foreground scheduler background scheduler

 application

Eno Thereska November 2004http://www.pdl.cmu.edu/ 26

API description: aborting/promoting tasks

fb_abort (addr_range, …)

fb_promote (addr_range, …)

Foreground Background

foreground scheduler background scheduler

 application

Eno Thereska November 2004http://www.pdl.cmu.edu/ 27

Complete API

Eno Thereska November 2004http://www.pdl.cmu.edu/ 28

Designing disk maintenance applications

• APIs talk in terms of logical blocks (LBNs)
• Some applications need structured version

• as presented by file system or database

• Example consistency issues
• application wants to read file “foo”
• registers task for inode’s blocks
• by time blocks read, file may not exist anymore!

Eno Thereska November 2004http://www.pdl.cmu.edu/ 29

• Application does not care about structure
• scrubbing, data migration, array reconstruction

• Coordinate with file system/database
• cache write-backs, LFS cleaner, index

generation

• Utilize snapshots
• backup, background fsck

Designing disk maintenance applications

Eno Thereska November 2004http://www.pdl.cmu.edu/ 30

Outline

• Motivation and overview

• The freeblock subsystem

• Background application interfaces
• Example applications
• Conclusions

Eno Thereska November 2004http://www.pdl.cmu.edu/ 31

Example #1: Physical backup

• Backup done using snapshots

backup application

freeblock subsystem

snapshot subsystem (in FS)

getblks()

sy
s_

fb
_r

ea
d(

)

sy
s_

fb
_g

et
re

co
rd

()

Eno Thereska November 2004http://www.pdl.cmu.edu/ 32

Example #1: Physical backup

• Experimental setup
• 18 GB Seagate Cheetah 36ES
• FreeBSD in-kernel implementation
• PIII with 384MB of RAM
• 3 benchmarks used: Synthetic, TPC-C, Postmark

• snapshot includes 12GB of disk

• GOAL: read whole snapshot for free

Eno Thereska November 2004http://www.pdl.cmu.edu/ 33

Backup completed for free

0

10

20

30

40

50

60

70

80

90

Idle system Synthetic TPC-C Postmark

B
ac

ku
p

tim
e

(m
in

s)

< 2% impact on
foreground workload

Eno Thereska November 2004http://www.pdl.cmu.edu/ 34

Example #2: Cache write-backs

• Must flush dirty buffers
• for space reclamation
• for persistence (if memory is not NVRAM)

• Simple cache manager extensions
• fb_write(dirty_buffer,…)
• getbuffer_fn(dirty_buffer,…)
• fb_promote(dirty_buffer,…)
• fb_abort(dirty_buffer,…)

when blocks become dirty

when flush is
forced
when block dies in cache

calling back to lock

Eno Thereska November 2004http://www.pdl.cmu.edu/ 35

Example #2: Cache write-backs

• Experimental setup
• 18 GB Seagate Cheetah 36ES
• PIII with 384MB of RAM
• controlled experiments with synthetic workload
• benchmarks (same as used before) in FreeBSD
• syncer daemon wakes up every 1 sec and

flushes entries that have been dirty > 30secs

• GOAL: write back dirty buffers for free

Eno Thereska November 2004http://www.pdl.cmu.edu/ 36

Foreground read:write has impact

0

20

40

60

80

100

0 1:
2

1:1 2:1

read-write ratio

%
 d

irt
y

bu
ffe

rs
 c

le
an

ed
 fo

r
fr

ee

0

20

40

60

80

100

0 1:2 1:1 2:1%
 im

pr
ov

em
en

t i
n

av
g.

 r
es

p.
 ti

m
e

read-write ratio

Eno Thereska November 2004http://www.pdl.cmu.edu/ 37

95% of NVRAM cleaned for free

0

20

40

60

80

100

LRU+Syncer LRU only

%
 d

irt
y

bu
ffe

rs
 c

le
an

ed
 fo

r
fr

ee

0

20

40

60

80

100

LRU+Syncer LRU only%
 im

pr
ov

em
en

t i
n

av
g.

 r
es

p.
 ti

m
e

Eno Thereska November 2004http://www.pdl.cmu.edu/ 38

10-20% improvement in overall perf.

0

10

20

30

40

50

%
 d

irt
y

bu
ffe

rs
 c

le
an

ed
 fo

r
fr

ee

0

10

20

30

40

50

%
 im

pr
ov

em
en

t i
n

ap
p.

 th
ro

ug
hp

ut

Synthetic TPC-C Postmark Synthetic TPC-C Postmark

Eno Thereska November 2004http://www.pdl.cmu.edu/ 39

Example #3: Layout reorganizer

• Layout reorganization improves
access latencies
• defragmentation is a type of reorganization
• typical example of background activity

• Our experiment:
• disk used is 18GB
• we want to defrag up to 20% of it
• goal: defrag for free

Eno Thereska November 2004http://www.pdl.cmu.edu/ 40

Disk Layout Reorganized for Free!

Random

Circular

Track Shuffle

0

100

200

300

400

500

600

1% 10% 20% 1% 10% 20%
8MB 64MB

Reorganizer buffer size (MB)

R
eo

rg
an

iz
at

io
n

tim
e

(m
in

s)

Eno Thereska November 2004http://www.pdl.cmu.edu/ 41

Other maintenance applications

• Virus scanner
• LFS cleaner
• Disk scrubber
• Data mining
• Data migration

Eno Thereska November 2004http://www.pdl.cmu.edu/ 42

Summary

• Framework for building background
storage applications

• Asynchronous interfaces
• applications describe what they need
• storage subsystem satisfies their needs

• Works well for real applications

http://www.pdl.cmu.edu/Freeblock/

