
1

Memory Hierarchy

Dave Eckhardt
Bruce Maggs

2

Am I in the wrong class?

� “Memory hierarchy”: OS or Architecture?

� Yes

� Why cover it here?

� OS manages several layers

� RAM cache(s)

� Virtual memory

� File system buffer cache

� Learn core concept, apply as needed

3

Memory Desiderata
(i.e., desirable properties)

� Capacious

� Fast

� Cheap

� Compact

� Cold

� Pentium-4 2 Ghz: 75 watts!?

� Non-volatile (can remember w/o electricity)

4

You can't have it all

� Pick one

� ok, maybe two

� Bigger ⇒ slower (speed of light)

� Bigger ⇒ more defects

� If constant per unit area

� Faster, denser ⇒ hotter

� At least for FETs

5

Users want it all

� The ideal

� Infinitely large, fast, cheap memory

� Users want it (those pesky users!)

� They can't have it

� Ok, so cheat!

6

Locality of reference

� Users don't really access 4 gigabytes uniformly

� 80/20 “rule”

� 80% of the time is spent in 20% of the code

� Great, only 20% of the memory needs to be fast!

� Deception strategy

� Harness 2 (or more) kinds of memory together

� Secretly move information among memory types

7

Cache

� Small, fast memory...

� Backed by a large, slow memory

� Indexed via the large memory's address space

� Containing the most popular parts

� (at least at the moment)

8

Covered in Detail in 15-213 Lecture

� Memory technology (SRAM, DRAM)

� Disk technology (platters, tracks, sectors)

� Technology trends and statistics

� Concepts of spatial and temporal locality

� Basic description of a cache

� Types of cache misses

� Write policies

� Examples of caches

9

Cache Example – Satellite Images

� SRAM cache holds popular pixels

� DRAM holds popular image areas

� Disk holds popular satellite images

� Tape holds one orbit's worth of images

10

Great Idea...

� Clean general-purpose implementation?

� #include <cache.h>

� No: tradeoffs different at each level

� Size ratio: data address / data size

� Speed ratio

� Access time = f(address)

� But the idea is general-purpose

11

Pyramid of Deception

Tape Robot

Disk Array

RAM

L2 cache

L1 cache

12

Key Questions

� Line size

� Placement/search

� Miss policy

� Eviction

� Write policy

13

Content-Addressable Memory

� RAM

� store(address, value)

� fetch(address) ⇒ value

� CAM

� store(address, value)

� fetch(value) ⇒ address

� “It's always the last place you look”

� Not with a CAM!

14

Main Memory Contents

Address Contents

00010020 8B047E8D
00010024 565704EC
00010028 04758D53
0001002C 83E58955

15

CAM + SRAM = Cache

8B047E8D
04758D53
83E58955
565704EC

SRAM

0
4
8

12

00100020
00100028
0010002C
00010024

CAM

0
4
8

12

16

CAM + SRAM = Cache

8B047E8D
565704EC
04758D53
83E58955

SRAM

0010002C
00100024
00100028
00010020

CAM

17

Cache Lookup via CAM

8B047E8D
565704EC
04758D53
83E58955

SRAM

0010002C
00100024
00100028
00010020

CAM
00100028

18

CAM Match Indicates Cache Slot

8B047E8D
565704EC
04758D53
83E58955

SRAM

0010002C
00100024
00100028
00010020

CAM
00100028

04758D53

19

Content-Addressable Memory

� CAMS are cool!

� But fast CAMs are small (speed of light, etc.)

� If this were an architecture class...

� We would have 5 slides on associativity

� Not today: only 2

20

Direct-Mapped Cache

16 bytes wide

00100028

16 slots
slot #

21

Direct-Mapped Cache

16 bytes wide

00100028

16 slots
slot #

24 “tag” bits

22

Direct-Mapped Cache

16 bytes wide

00100028

16 slots

byte offset within slot

slot #

24 “tag” bits

23

Two-Way Associative Cache

00100028

check tag bits

01278324

24

Placement/search

� Placement = "Where can we put ____?"

� “Direct mapped” - each item has one place

� Think: hash function

� "Fully associative" - each item can be any place

� Think: CAM

25

Placement/search

� Direct Mapped

� Placement & search are trivial

� False collisions are common

� String move: *q++ = *p++;

� Each iteration could be two cache misses!

26

Placement/search

� Fully Associative

� No false collisions

� Cache size/speed limited by CAM size

� Choosing associativity

� Trace-driven simulation

� Hardware constraints

27

Thinking the CAM way

� Are we having P2P yet?

� I want the latest freely available Janis Ian song...

� www.janisian.com/article-internet_debacle.html

� ...who on the Internet has a copy for me to download?

� I know what I want, but not where it is...

� ...Internet as a CAM

28

Sample choices

� L1 cache

� Often direct mapped

� Sometimes 2-way associative

� Depends on phase of transistor

� Disk block cache

� Fully associative

� Open hash table = large variable-time CAM

� Fine since "CAM" lookup time << disk seek time

29

Cache Systems Managed by OS

� Virtual memory (with hardware assistance)

� Translation caches

� Disk cache

� File system cache (AFS/NFS)

� Web cache

� ARP cache

� DNS cache

30

Example

� Disk block cache

� Holds disk sectors in RAM

� Entirely defined by software

� ~ 0.1% to maybe 1% of disk (varies widely)

� Indexed via (device, block number)

31

Eviction

� “The steady state of disks is 'full'”.

� Each placement requires an eviction

� Easy for direct-mapped caches

� Otherwise, policy is necessary

� Common policies

� Optimal, LRU

� LRU may be great, can be awful

� 4-slot associative cache: 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, ...

32

Eviction

� Random

	 Pick a random item to evict

	 Randomness protects against pathological cases

	 When could it be good?

� L1 cache

	 LRU is easy for 2-way associative!

� Disk block cache

	 Frequently LRU, frequently modified

	 “Prefer metadata”, other hacks

33

Translation Caches

� Address mapping

	 CPU presents virtual address (%CS:%EIP)

	 Fetch segment descriptor from L1 cache (or not)

	 Fetch page directory from L1 cache (or not)

	 Fetch page table entry from L1 cache (or not)

	 Fetch the actual word from L1 cache (or not)

34

“Translation lookaside buffer” (TLB)

� Observe result of first 3 fetches

	 Segmentation, virtual ⇒ physical mapping

� Cache the mapping

	 Key = virtual address

	 Value = physical address

� Q: Write policy?

35

Challenges - Coherence

� Multiprocessor: 4 L1 caches share L2 cache

	 What if L1 does write-back?

� TLB: v ⇒ p all wrong after context switch

� What about non-participants?

	 I/O device does DMA

� Solutions

	 Snooping

	 Invalidation messages (e.g., set_cr3())

