
1

Review

Dave Eckhardt
de0u@andrew.cmu.edu



2

Synchronization

� Exam will be closed-book
� Who is reading comp.risks?
� About today's review

� Mentioning key concepts

� No promise of exhaustive coverage

� Reading some of the textbook is advisable!

� Will attempt a 3-slide summary at end



3

OS Overview

� Abstraction/obstruction layer
� Virtualization
� Protected sharing/controlled interference



4

Hardware

� Inside the box – bridges
� User registers and other registers
� Fairy tales about system calls
� Kinds of memory, system-wide picture

� User vs. kernel

� Code, data, stack

� Per-process kernel stack

� Device driver, interrupt vector, masking 
interrupts



5

Hardware

� [DMA]
� System clock

� “Time of day” clock (aka “calendar”)

� Countdown timer



9

Process

� Pseudo-machine (registers, memory, I/O)
� Life cycle: fork()/exec()

� specifying memory, registers, I/O, kernel state

� the non-magic of stack setup (argv[])

� the non-magic function that calls main()

� States: running, runnable, sleeping
� also forking, zombie

� Process cleanup: why, what



10

Thread

� Core concept: schedulable set of registers
� With access to some resources (“task”, in Mach 

terminology)

� Thread stack

� Why threads?
� Cheap context switch

� Cheap access to shared resources

� Responsiveness

� Multiprocessors



11

Thread types

� Internal
� optional user-space library

� register save/restore (incl. stack swap)

� Features
� only one outstanding system call

� “cooperative” scheduling might not be

� no win on multiprocessors



12

Thread types

� Kernel threads
� resources (memory, ...) shared & reference-counted

� kernel manages: registers, kstack, scheduling

� Features
� good on multiprocessors

� may be “heavyweight”



13

Thread types

� M:N
� M user threads share N kernel threads

� dedicated or shared

� Features
� Best of both worlds

� Or maybe worst of both worlds



14

Thread cancellation

� Asynchronous/immediate
� Don't try this at home

� How to garbage collect???

� Deferred
� Requires checking or cancellation points



16

Race conditions

� Lots of “++x vs. --x” examples using table format
� The setuid shell script attack

� (as an example in a different arena)



17

Wacky memory

� Memory writes may be re-ordered or coalesced
� That's not a bug, it's a feature!



18

Atomic sequences

� short
� require non-interference
� typically nobody is interfering
� store->cash += 50;
� “mutex” / “latch”



19

Voluntary de-scheduling

� “Are we there yet?”
� We want somebody else to have our CPU
� Not-running is an OS service!
� Atomic:

� release state-guarding mutex

� go to sleep

� “condition variable”



20

Critical section problem

� Three goals
� Mutual exclusion

� Progress – choosing time must be bounded

� Bounded waiting – choosing cannot be unboundedly 
unfair

� Synchronization lectures
� “Taking Turns When Necessary” algorithm

� Bakery algorithm



21

Mutex implementation

� Hardware flavors
� XCHG, Test&Set

� Load-linked, store-conditional

� i860 magic lock bit

� Basically isomorphic

� Lamport's algorithm (not on test!!!)
� “Passing the buck” to the OS (or why not!)
� Kernel-assisted instruction sequences



22

Bounded waiting

� One algorithm discussed
� How critical in real life?

� Why or why not?



23

Environment matters

� Spin-wait on a uniprocessor????
� How reasonable is your scheduler?

� Maybe bounded waiting is free?



24

Condition variables

� Why we want them
� How to use them
� What's inside?
� The “atomic sleep” problem



25

Semaphores

� Concept
� Thread-safe integer

� wait()/P()

� signal()/V()

� Use
� Can be mutexes or condition variables

� 42 flavors
� Binary, non-blocking, counting/recursive



26

Monitor

� Concept
� Collection of procedures

� Block of shared state

� Compiler-provided synchronization code

� Condition variables (again)



27

Deadlock

� Definition
� N processes

� Everybody waiting for somebody else

� Four requirements
� Process/Resource graphs
� Dining Philosophers example



28

Prevention

� Four Ways To Forgiveness
� One of them actually commonly used



29

Avoidance

� Keep system in “safe” states
� States with an “exit strategy”

� Assume some process will complete, release resources
� Make sure this enables another to finish, etc.
� Banker's Algorithm



30

Detection

� Don't be paranoid (but don't be oblivious)
� Scan for cycles

� When?

� What to do when you find one?



31

Starvation

� Always a danger
� Understand vs. deadlock

� Solutions probably application-specific



32

Context switch

� yield() by hand (user-space threads)
� No magic!

� yield() in the kernel
� Built on the magic process_switch()

� Inside the non-magic process_switch()
� Scheduling
� Saving
� Restoring

� Clock interrupts, I/O completion



35

Memory Management

� Where addresses come from
� Program counter

� Stack pointer

� Random registers

� Image file vs. Memory image
� What a link editor does

� relocation

� Logical vs. physical addresses



36

Swapping / Contiguous Allocation

� Swapping
� Stun a process, write it out to disk

� Memory can be used by another process

� Contiguous allocation
� Need a big-enough place to swap in to

� External fragmentation (vs. internal)



44

Summary – What is an OS?

� Parts of a machine
� Memory, registers

� Interrupts/traps and their handlers

� Parts of a process (incl. thread)
� Memory, registers

� System calls (stubs, handlers)



45

Summary – What is an OS?

� How to assemble machine parts into process parts
� How to make virtual memory from physical memory

� How to make a process from memory and registers
� And an executable file

� How to share a machine among processes
� (and how to share a process among threads)

� Context switch/yield



46

Summary – Synchronization

� Basic RAM-based algorithms
� Be able to read one and think about it

� Mutex, condition variable
� When to use each one, and why

� What's inside each one, and why



47

Summary – Deadlock

� A fundamental OS problem
� Affects every OS

� No “silver bullet”

� What you need for deadlock
� Prevention, Avoidance, Detection/Recovery

� What each is, how they relate


