Bootstrapping

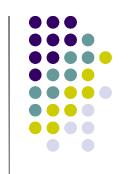
Steve Muckle
Dave Eckhardt

Motivation

- What happens when you turn on your PC?
- How do we get to main() in kernel.c?

Overview

- Requirements of Booting
- Ground Zero
- The BIOS
- The Boot Loader
- Our projects: Multiboot, OSKit
- BIOS extensions: PXE, APM
- Other universes: "big iron", Open Firmware
- Further reading


- Initialize machine to a known state
- Make sure basic hardware works
- Inventory hardware
- Load a real operating system
- Run the real operating system

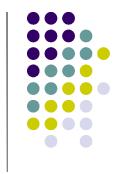
Ground Zero

- You turn on the machine
- Execution begins in real mode at a specific memory address
 - Real mode primeval x86 addressing mode
 - Only 1 Mb of memory is addressable
 - Start address is "end of memory"
 - 0xFFFF0
 - Contains a jump to the real BIOS entry point
- What's the BIOS?

Basic Input/Output System (BIOS)

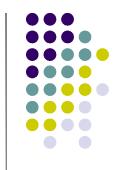
- Code stored in mostly-read-only memory
 - Flash, previously EPROM, previously EPROM
- Configures hardware details
 - RAM refresh rate or bus speed
 - Password protection
 - Boot-device order
- Loads OS, acts as mini-OS
- Provides some device drivers to real OS

BIOS POST


- Power On Self Test (POST)
- Scan for critical resources
 - RAM
 - Test it (only a little!)
 - Graphics card look for driver code at 0xC000
 - Disk look for driver code at 0xC8000
 - Keyboard
- Missing something?
 - Beep

- Consult saved settings for selected order
 - "A: C: G:" (maybe PXE)
- Load the first sector from a boot device
 - could be a floppy, hard disk, CDROM
 - without a BIOS, we'd be in a bit of a jam
- If the last two bytes are AA55, we're set
- Otherwise look somewhere else
 - "No Operating System Present"

BIOS Boot-Sector Launch

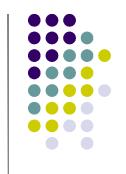

- Boot sector is copied to 0x7C00
- Execution is transferred to 0x7C00
- Extra step for hard disk or CD-ROM
 - Boot sector ("MBR") knows about partitions
 - Moves itself elsewhere in memory
 - Loads partition boot sector at 0x7C00
- Now we're executing the bootloader the first "software" to execute on the PC

Bootloader

- Some bootloaders exist to load one OS
- Others give you a choice of which to load
- Some are small and have a simple interface
 - "F1 FreeBSD F2 Windows"
- Some are large, contain GUI, shell prompt
- We use GRUB
 - http://www.gnu.org/software/grub/


Bootloader's Job

- Mission: load operating system
- From where?
 - "/boot/sokoban.gz" is easier said than done
 - May need to understand a file system
 - Directories, inodes, symbolic links!
 - May need to understand multiple file systems
 - Single disk may contain more than one
 - Layout defined by "partition label"
 - ...and "extended partition label"
- Recall: Boot loader is 510 bytes of code!

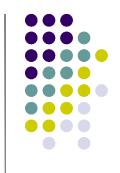

Carnegie Mellon University


- GRUB is larger than one sector
- First sector, loaded in by the BIOS just...
 - ...loads the rest of the boot loader
 - "GRUB loading stage 1"
- GRUB then presents boot menu
- OS-load challenge
 - BIOS runs in real mode only 1 meg of RAM!
 - OS may be larger than 1 meg
 - Linux often; Windows absolutely!

Brain-switching

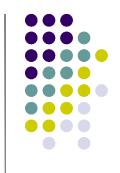
- Switch back and forth between real and protected mode
 - Real mode: BIOS works, can drive disk
 - Protected mode: can access lots of memory
- Switching code is tricky
 - Somewhat like OS process context switch
 - Roughly 16 carefully-crafted instructions each way
- Done: jump to the kernel's entry point
 - How do we know the kernel's entrypoint?

- Can't we just jump to the beginning?
- Probably not
 - If kernel is a "regular executable" it begins with an "executable file header"...
 - If the OS has the concept of "bss", the zeroes aren't in the file...
- Loading the bytes into RAM isn't enough
 - We must understand, mutate them



- Many OSes require their own bootloader
- Multiboot "standard"
 - Kernel specifies entry point &c
- The multiboot header must be located in the first 8192 bytes
- This is the mysterious multiboot.o...

0x1badb002
flags
checksum
Header_addr
load_addr
load_end_addr
bss_end_addr
entry_addr


- Entry point is asm function in multiboot.o
- This calls the first C function, multiboot_main

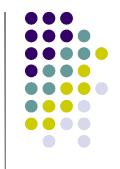
OSkit

- multiboot_main() calls:
 - base_cpu_setup(): init GDT, IDT, and TSS
 - base_multiboot_init_mem(): init LMM
 - base_multiboot_init_cmdline()
 - parse cmdline passed to kernel by bootloader
- kernel_main() (at last, your code!)
 - exit(), if kernel_main() ever returns
 - press a key to reboot...

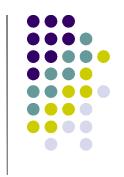
PXE


- Preboot Execution Environment
- "How a PC should net boot"
 - DHCP extensions to say
 - "I am a PXE client of DHCP"
 - "My machine ID is ... my hardware type is ..."
 - Libraries for downloaded boot loader to use
 - Ethernet, UDP, TFTP

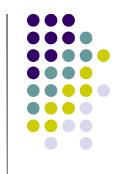
APM


- Advanced Power Management
- Problem Laptop hardware is "special"
 - Lots of power-critical hardware
 - Totally different from one machine to another
 - Disk spin-down (standar, so fairly easy)
 - Display backlight, processor speed (not so easy)
 - South bridge, DRAM controller, keyboard...
 - · Sequencing these in the right order is very machine-specific
- Problem user <u>does</u> things (close lid...)

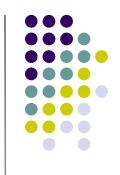
APM


- Solution "power kernel"
 - OS asks it to control power hardware
 - Power hardware tells OS about events
 - Lid closed
 - Battery low
- Complex rules for messaging back and forth

"Big Iron" (mainframes)


- "Boot loader" may be a <u>separate machine</u>
 - Main CPU powers on, does not run code
 - "Front-end" tasks
 - Run thorough diagnostics on main machine
 - Store OS into its memory
 - Set its program counter to entry point
 - Turn on instruction fetching
- "Front-end" also contains a debugger
 - Useful when your OS crashes

Open Firmware


- Sun & Mac hardware
- Goal: share devices across processor families
 - Ethernet, SCSI disk controller, ...
- Solution
 - Processor-independent BIOS modules on cards
 - Collection of FORTH methods
 - test, boot, etc.
- "Boot ROM" may contain a small debugger
 - Sun, Mac do this... PCs are just starting to catch up

Summary

- It's a long, strange trip
 - Power on: maybe no RAM, maybe no CPU!!
 - Maybe beep, maybe draw a sad face
 - Locate OS
 - Load N stages
 - Tell kernel about the machine and the boot params
 - Provide support to kernel once it's running

Further Reading

- More BIOS details
 - http://www.pcguide.com/ref/mbsys/bios/bootSequence-c.html
 - http://howstuffworks.lycoszone.com/bios2.htm
 - http://bioscentral.com/
- A <u>real</u> memory tester memtest86.com
- Open-source BIOS!
 - www.linuxbios.org
- PXE ftp://download.intel.com/labs/manage/wfm/download/pxespec.pdf