
15-410, F’04- 1 -

Virtual Memory #3
Oct. 13, 2004

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L18_VM3

15-410
“The only way to win is not to play.”

15-410, F’04- 2 -

Synchronization

Mid-term examMid-term exam

� Most-likely date: Thursday, October 21st

� Time and conflict resolution are in progress

First Project 3 checkpointFirst Project 3 checkpoint

� Monday during class time

� Meet in Wean 5207

� Show us gettid()

� Explain which parts are “real”, which are “demo quality”

15-410, F’04- 3 -

Last Time

Partial memory residence (demand paging) in actionPartial memory residence (demand paging) in action

Process address spaceProcess address space

� Logical: list of regions

� Hardware: list of pages

Fault handler is Fault handler is complicatedcomplicated

� Page-in, speed hacks (copy-on-write, zero-fill), ...

� Shared memory via mmap()

Definition & use ofDefinition & use of

� Dirty bit

� Reference bit

15-410, F’04- 4 -

Outline

Page-replacement policiesPage-replacement policies

� The eviction problem

� Sample policies (theory and practice)

� Page buffering

� Frame Allocation (process page quotas)

Virtual-memory usage optimizationsVirtual-memory usage optimizations

The mysterious TLBThe mysterious TLB

15-410, F’04- 5 -

Page Replacement/Page Eviction

Process always want Process always want moremore memory frames memory frames

� Explicit deallocation is rare

� Page faults are implicit allocations

System inevitably runs out of framesSystem inevitably runs out of frames

SolutionSolution

� Pick a frame, store contents to disk

� Transfer ownership to new process

� Service fault using this frame

15-410, F’04- 6 -

Pick a Frame

Two-level approachTwo-level approach

� Determine # frames each process “deserves”

� “Process” chooses which frame is least-valuable

� Most OS's: kernel actually does the choosing

System-wide approachSystem-wide approach

� Determine globally-least-useful frame

15-410, F’04- 7 -

Store Contents to Disk

Where does it belong?Where does it belong?

� Allocate backing store for each page

� What if we run out?

Must we Must we reallyreally store it? store it?

� Read-only code/data: no!

� Can re-fetch from executable

� Saves paging space & disk-write delay

� But file-system read() may be slower than paging-disk read

� Not modified since last page-in: no!

� Hardware typically provides “page-dirty” bit in PTE

� Cheap to “store” a page with dirty==0

15-410, F’04- 8 -

Page Eviction Policies

Don't try these at homeDon't try these at home

� FIFO

� Optimal

� LRU

PracticalPractical

� LRU approximation

15-410, F’04- 9 -

FIFO Page Replacement

ConceptConcept

� Page queue

� Page added to tail of queue when first given a frame

� Always evict oldest page (head of queue)

EvaluationEvaluation

� Fast to “pick a page”

� Stupid

� Will indeed evict old unused startup-code page

� But guaranteed to eventually evict process's favorite page
too!

15-410, F’04- 10 -

Optimal Page Replacement

ConceptConcept

� Evict whichever page will be referenced latest

� “Buy the most time” until next page fault

EvaluationEvaluation

� Requires perfect prediction of program execution

� Impossible to implement

So?So?

� Used as upper bound in simulation studies

15-410, F’04- 11 -

LRU Page Replacement

ConceptConcept

� Evict Least-Recently-Used page

� “Past performance may not predict future results”

� ...but it's an important hint!

EvaluationEvaluation

� Would probably be reasonably accurate

� LRU is computable without a fortune teller

� Bookkeeping very expensive

� (right?)

15-410, F’04- 12 -

LRU Page Replacement

ConceptConcept

� Evict Least-Recently-Used page

� “Past performance may not predict future results”

� ...but it's an important hint!

EvaluationEvaluation

� Would probably be reasonably accurate

� LRU is computable without a fortune teller

� Bookkeeping very expensive

� Hardware must sequence-number every page reference

� Evictor must scan every page's sequence number

15-410, F’04- 13 -

Approximating LRU

Hybrid hardware/software approachHybrid hardware/software approach

� 1 reference bit per page table entry

� OS sets reference = 0 for all pages

� Hardware sets reference=1 when PTE is used

� OS periodically scans

� (reference == 1) ⇒ “ recently used”

� Result:

� Hardware sloppily partitions memory into “ recent” vs. “old”

� Software periodically samples, makes decisions

15-410, F’04- 14 -

Approximating LRU

“Second-chance” algorithm“Second-chance” algorithm

� Use stupid FIFO queue to choose victim page

� reference == 0?

� not “ recently” used, evict page, steal its frame

� reference == 1?

� “somewhat-recently used” - don't evict page this time

� append page to rear of queue

� set reference = 0
» Process must use page again “soon” for it to be skipped

ApproximationApproximation

� Observe that queue is randomly sorted

� We are evicting not-recently-used, not least-recently-used

15-410, F’04- 15 -

Approximating LRU

“Clock” algorithm“Clock” algorithm

� Page queue requires linked list

� Extra memory traffic to update pointers

� Page queue's order is essentially random

� Doesn't add anything to accuracy

� Revision

� Don't have a queue of pages

� Just treat memory as a circular array

15-410, F’04- 16 -

Clock Algorithm

static int nextpage = 0;

boolean reference[NPAGES];

int choose_victim() {

 while (reference[nextpage]) {

 reference[nextpage] = false;

 nextpage = (nextpage+1) % NPAGES;

 }

return(nextpage);

}

15-410, F’04- 17 -

Page Buffering

ProblemProblem

� Don't want to evict pages only after fault happens

� Must wait for disk write before launching disk read...slow...

“Assume a blank page...”“Assume a blank page...”

� Page fault handler can be much faster

“page-out daemon”“page-out daemon”

� Scan system for dirty pages

� Write to disk

� Clear dirty bit

� Page can be instantly evicted later

� When, how many? Indeed...

15-410, F’04- 18 -

Frame Allocation

How many frames should a process have?How many frames should a process have?

Minimum allocationMinimum allocation

� Examine worst-case instruction

� Can multi-byte instruction cross page boundary?

� Can memory parameter cross page boundary?

� How many memory parameters?

� Indirect pointers?

15-410, F’04- 19 -

“Fair” Frame Allocation

Equal allocationEqual allocation

� Every process gets same number of frames

� “Fair” - in a sense

� Probably wasteful

Proportional allocationProportional allocation

� Every process gets same percentage of residence

� (Larger processes get more frames)

� “Fair” - in a different sense

� Probably the right approach
» Theoretically, encourages greediness

15-410, F’04- 20 -

Thrashing

ProblemProblem

� Process needs N frames...

� Repeatedly rendering image to video memory

� Must be able to have all “world data” resident 20x/second

� ...but OS provides N-1, N/2, etc.

ResultResult

� Every page OS evicts generates “ immediate” fault

� More time spent paging than executing

� Paging disk constantly busy

� Denial of “paging service” to other processes

15-410, F’04- 21 -

“Working-Set” Allocation Model

ApproachApproach

� Determine necessary # frames for each process

� “Working set” - size of frame set you need to get work done

� If unavailable, swap entire process out

� (later, swap some other process out)

How to measure?How to measure?

� Periodically scan process reference bits

� Combine multiple scans (see text)

EvaluationEvaluation

� Expensive

� Can we approximate it?

15-410, F’04- 22 -

Page-Fault Frequency Approach

ApproachApproach

� Thrashing == “excessive” paging

� Adjust per-process frame quotas to balance fault rates

� System-wide “average page-fault rate” (faults/second)

� Process A fault rate “ too low” : reduce frame quota

� Process A fault rate “ too high” : increase frame quota

What if quota increase doesn't help?What if quota increase doesn't help?

� If giving you some more frames doesn't help, maybe you
need a lot more frames than you have...

� Swap you out entirely for a while

15-410, F’04- 23 -

Program Optimizations

Is paging an “OS problem”?Is paging an “OS problem”?

� Can a programmer reduce working-set size?

Locality depends on data structuresLocality depends on data structures

� Arrays encourage sequential accesses

� Many references to same page

� Predictable access to next page

� Random pointer data structures scatter references

Compiler & linker can help tooCompiler & linker can help too

� Don't split a routine across two pages

� Place helper functions on same page as main routine

Effects can be Effects can be dramaticdramatic

15-410, F’04- 24 -

Double Trouble? Triple Trouble?

Program requests memory accessProgram requests memory access

Processor makes Processor makes twotwo memory accesses! memory accesses!

� Split address into page number, intra-page offset

� Add to page table base register

� Fetch page table entry (PTE) from memory

� Add frame address, intra-page offset

� Fetch data from memory

Can be worse than that...Can be worse than that...

� x86 Page-Directory/Page-Table

� Three physical accesses per virtual access!

15-410, F’04- 25 -

Translation Lookaside Buffer
(TLB)
ProblemProblem

� Cannot afford double/triple memory latency

Observation - “ locality of reference”Observation - “ locality of reference”

� Program often accesses “nearby” memory

� Next instruction often on same page as current instruction

� Next byte of string often on same page as current byte

� (“Array good, linked list bad”)

SolutionSolution

� Page-map hardware caches virtual-to-physical mappings

� Small, fast on-chip memory

15-410, F’04- 26 -

Simplest Possible TLB

ApproachApproach

� Remember most-recent virtual-to-physical translation

� (from, e.g., Page Directory + Page Table)

� See if next memory access is to same page

� If so, skip PD/PT memory traffic; use same frame

� 3X speedup, cost is two 20-bit registers

15-410, F’04- 27 -

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

⇒f07⇒
....

Page
Directory

15-410, F’04- 28 -

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

⇒f07⇒
....

Page
Directory

15-410, F’04- 29 -

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

⇒f07⇒
....

Page
Directory

f34802A5

15-410, F’04- 30 -

TLB “Hit”

Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
........

f08
f07
....

Page
Directory

f34802A5

802A5

15-410, F’04- 31 -

TLB “Miss”

Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
........

f08
f07
....

Page
Directory

f34802A5

802A4

15-410, F’04- 32 -

TLB “Refill”

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

⇒f07⇒
....

Page
Directory

f25802A4

15-410, F’04- 33 -

Simplest Possible TLB

Can you think of a “pathological” instruction?Can you think of a “pathological” instruction?

� What would it take to “break” a 1-entry TLB?

How many TLB entries do we need, anyway?How many TLB entries do we need, anyway?

15-410, F’04- 34 -

TLB vs. Context Switch

After we've been running a while...After we've been running a while...

� ...the TLB is “hot” - full of page⇒frame translations

Interrupt!Interrupt!

� Some device is done...

� ...should switch to some other task...

� ...what are the parts of context switch, again?

	 General-purpose registers

	 ...?

15-410, F’04- 35 -

TLB vs. Context Switch

After we've been running a while...After we've been running a while...

 ...the TLB is “hot” - full of page⇒frame translations

Interrupt!Interrupt!

 Some device is done...

 ...should switch to some other task...

 ...what are the parts of context switch, again?

	 General-purpose registers

	 Page Table Base Register (x86 calls it ...?)

	 Entire contents of TLB!!
» (why?)

15-410, F’04- 36 -

x86 TLB Flush

1. Declare new page directory (set %cr3)1. Declare new page directory (set %cr3)

 Clears every entry in TLB (whoosh!)

	 Well, not “global” pages...how to use this?

2. INVLPG instruction2. INVLPG instruction

 Invalidates TLB entry of one specific page

 Is that more efficient or less?

15-410, F’04- 37 -

x86 Type Theory – Final Version
Instruction Instruction ⇒⇒ segment selector segment selector

 [PUSHL specifies selector in %SS]

Process Process ⇒⇒ (selector (selector ⇒⇒ (base,limit)) (base,limit))

 [Global,Local Descriptor Tables]

Segment, address Segment, address ⇒⇒ linear address linear address

TLB: linear address TLB: linear address ⇒⇒ physical address or... physical address or...

Process Process ⇒⇒ (linear address high (linear address high ⇒⇒ page table) page table)

 [Page Directory Base Register, page directory indexing]

Page Table: linear address middle Page Table: linear address middle ⇒⇒ frame address frame address

Memory: frame address, offset Memory: frame address, offset ⇒⇒

15-410, F’04- 38 -

Is there another way?

That seems That seems really complicatedreally complicated

 Is that hardware monster really optimal for every OS and
program mix?

 “The only way to win is not to play?”

Is there another way?Is there another way?

 Could we have no page tables?

 How would the hardware map virtual to physical???

15-410, F’04- 39 -

Software-loaded TLBs

ReasoningReasoning

 We need a TLB “ for performance reasons”

 OS defines each process's memory structure

	 Which memory ranges, permissions

 Hardware page-mapping unit imposes its own ideas

 Why impose a semantic middle-man?

ApproachApproach

 TLB contains small number of mappings

 OS knows the rest

 TLB miss generates special trap

 OS quickly fills in correct v⇒p mapping

15-410, F’04- 40 -

Software TLB features

Mapping entries can be computed many waysMapping entries can be computed many ways

 Imagine a system with one process memory size

� TLB miss becomes a matter of arithmetic

Mapping entries can be “ locked” in TLBMapping entries can be “ locked” in TLB

 Good idea to lock the TLB-miss handler's TLB entry...

 Great for real-time systems

Further readingFurther reading

 http://yarchive.net/comp/software_tlb.html

15-410, F’04- 41 -

TLB vs. Project 3

x86 has nice, automatic TLBx86 has nice, automatic TLB

� Hardware page-mapper fills it for you

� Activating new page directory flushes TLB automatically

� What could be easier?

It's not It's not totallytotally automatic automatic

� Something “natural” in your kernel may confuse it...

TLB debugging in SimicsTLB debugging in Simics

� logical-to-physical (l2p) command

� tlb0.info, tlb0.status

� More bits “ trying to tell you something”

� [INVLPG issues with Simics 1. Simics 2?]

15-410, F’04- 42 -

Summary

Page-replacement policiesPage-replacement policies

� The eviction problem

� Sample policies

� For real: LRU approximation with hardware support

� Page buffering

� Frame Allocation (process page quotas)

Virtual-memory usage optimizationsVirtual-memory usage optimizations

The no-longer-mysterious TLBThe no-longer-mysterious TLB

