15-410

“Way easier than when we were students”

Stack Discipline
Sep. 01, 2004

Lecture assembled by
Dave Eckhardt

Bruce Maggs

Review slides from 15-213 originally
developed by Randy Bryant and
Dave O'Halloran.

-1 - 1.02 Stack 15-410, F’04

Outline

Zoom-speed review

= Process memory model
= Linux memory model as an example, yours will be different

= |A32 stack organization
= You will need to understand this fully

= Register saving conventions
= You will need to understand this fully

“New material”
= Before & after main ()
= Project 0

-2- 15-410, F’04

Private Address Spaces

Each process has its own private address space.

Oxffffffff

0xc0000000

0x40000000

0x08048000
0

kernel virtual memory
(code, data, heap, stack)

user stack
(created at runtime)

v
A

memory mapped region for
shared libraries

?

run-time heap
(managed by malloc)

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

unused

memory
invisible to
user code

Y%esp (stack pointer)

<4 prk

\ loaded from the
executable file

15-410, F'04

FF

CO
BF
Upper
2 hex
digits of
address
80

Red Hat E

V. 6.2
~1920MB
memory
limit 40
3F

Stack

Heap

Shared
Libraries

Heap

Data

Text

Linux Memory Layout

Stack
= Runtime stack (8MB limit)

Heap
- Dynamically allocated storage
= When call malloc, calloc, new

Shared/Dynamic Libraries aka Shared Objects
- Library routines (e.g., printf, malloc)

- Linked into object code when first executed
- Windows has “DLLs” (semantic differences)

Data, BSS
- Statically allocated data
- E.g., arrays & strings declared in code

Text, RODATA
 Text - Executable machine instructions

- RODATA - Read-only (e.g., “const”)

15-410, F'04

BF

30
TF

Linux Memory Allocation

Some
Heap

Initially

—alack

v

Data

Text

BF

30
TF

40
3F

08
00

Linked

Stack

Libraries

Data

Text

BF

40
3F

08
00

Stack

v

Libraries

Data

Text

BF

30
TF

40
3F

08
00

More
Heap

Stack

Libraries

S

Data
Text

15-410, F'04

IA32 Stack

Stack “Bottom”

= Region of memory managed

with stack discipline / N
= Grows toward lower

addresses Incregsing
- Register %esp indicates Addrgsses

lowest stack address
= address of top element

Stack

Pointer
Sesp —P

AN

Stack Grows
Down

Stack “Top”

15-410, F'04

JA32 Stack Pushing

Pushing Stack “Bottom”
= pushl Src / N
= Fetch operand at Src
o Incref@sing
Decrement %esp by 4 Addresses

= Write operand at address
given by %esp

Stack Grows

Down
Stack

Pointer
sesp —B>

™~

Stack “Top”
-7 - 15-410, F’'04

IA32 Stack Popping

Popping Stack “Bottom”
= popl Dest / N
= Read operand at address _
given by %esp Incregsing

Addre¢sses
= |[ncrement %esp by 4

= Write to Dest

S_tack Stack [Grows
Pointer Dokn
%esp W
. X
Stack “Top”

-8 - 15-410, F'04

Stack Operation Examples

0x110
0x10c
0x108

%$eax
$edx

sesp

123

213

555

0x108

0x110
0x10c
0x108
0x104

%$eax
$edx

sesp

pushl %eax

123

213

213

555

0x104

0x110
0x10c
0x108
0x104

%$eax
$edx

sesp

popl %edx

123

213

213

213

0x108

15-410, F'04

Procedure Control Flow

= Use stack to support procedure call and return

Procedure call:

= call label Push return address on stack; Jump to
label

Return address value
= Address of instruction beyond call
= Example from disassembly
= 804854e: e8 3d 06 00 00 call 8048b90 <main>

= 8048553: 50 pushl %eax
= Return address = 0x8048553

Procedure return:
= ret Pop address from stack; Jump to address

- 10 - 15-410, F'04

Procedure Call Example

804854e: e8 3d 06 00 00 call
8048553: 50 pushl
call 8048b90
0x110 0x110
0x10c 0x10c
0x108 123 0x108 123
0x104 |0x8048553
sesp 0x108 sesp 0x104
%eip |0x804854e %eip |0x8048b90

“11 -

%$eip Is program counter

8048b90 <main>

%$eax

15-410, F'04

Procedure Return Example

8048591: 3

_12-

0x110
0x10c
0x108
0x104

sesp

seip

ret

123

0x8048553

0x104

0x8048591

%$eip Is program counter

0x110
0x10c
0x108

sesp

seip

ret

123

0x8048553

0x108

0x8048553

15-410, F'04

Stack-Based Languages

Languages that Support Recursion
= e.g., C, Pascal, Java

= Code must be “Reentrant’
= Multiple simultaneous instantiations of single procedure

= Need some place to store state of each instantiation
= Arguments
= Local variables
= Return pointer

Stack Discipline

= State for given procedure needed for limited time
= From when called to when return

= Callee returns before caller does

Stack Allocated in Frames

= state for single procedure instantiation
- 13 - 15-410, F'04

Call Chain Example

Code Structure
yoo (...)
{
y who (...)
who () ; {
* amI () ;
} 5 0 G
amI () ;
}

- Procedure amI

recursive

_ 14 -

Call Chain

15-410, F'04

Stack Frames

Contents
= Local variables
= Return information

yoo

= Temporary space

Management

= Space allocated when enter
procedure
= “Set-up” code

= Deallocated when return
= “Finish” code

Pointers

= Stack pointer %esp indicates
stack top

= Frame pointer $ebp indicates

- 15- start of current frame

who

amI

Frame
Pointer
Sebp

proc

Stack
Pointer
sesp

15-410, F'04

|JA32/Linux Stack Frame

Current Stack Frame (“Top”
to Bottom)

= Parameters for function
about to call
= “Argument build”

= Local variables
= If can’t keep in registers

= Saved register context
= Old frame pointer

Caller Stack Frame

= Return address
= Pushed by call instruction

= Arguments for this call

_ 16 -

-
Ca"er <
Frame
Arguments
Frame Pointer \ |Return Addr
(3ebp) —»| Old %ebp
Saved
Registers
+
Local
Variables
Argument
Stack Pointer guil d
($esp) >
15-410, F'04

swap

int zipl = 15213;
int zip2 = 91125;

void call_swap()

{

swap (&zipl, &zip2),;

void swap (int *xp,
{
int £t0 = *xp;
int tl1 = *yp;

int *yp)

*xp = t1;
*yp = t0;
}
- 17 -

Calling swap from call_swap

call_ swap:
pushl $zip2 # Global Var
pushl $zipl # Global Var
call swap

: Resulting
. Stack
&zip2
&zipl

Rtn adr |[«— %esp

15-410, F'04

void swap (int *xp,
{
int t0 = *xp;
int tl1 = *yp;
*xp = t1;
*yp = tO0;

int *yp)

_ 18 -

swap:

pushl %ebp
:} Set

movl %esp, $Sebp

pushl %ebx Up

movl 12 (%ebp), Secx
movl 8 (%ebp), sedx
movl (%ecx), %eax > Body
movl (%edx), $ebx
movl %eax, (%edx)
movl %ebx, (%ecx)

~
movl -4 (%ebp) ,h Sebx Finish
movl %ebp, $Sesp
popl %ebp ~
ret

15-410, F'04

swap Setup #1
Entering ReSUItlng
<4+— Sebp sebp
&zip2 YP
&zipl Xp
Rtn adr [¢— %esp Rtn adr
Old %$ebp $esp
swap:
pushl %ebp
movl %esp, $Sebp
pushl %ebx
- 19 - 15-410, F’04

swap Setup #2

Entering
Stack

<4+— Sebp

&zip2

&zipl

Rtn adr |[«— %esp

swap:
pushl %ebp
mov]l %$esp, $ebp

Resulting
Stack

yp

Xp

Rtn adr

Old %$ebp

pushl %ebx
- 20 -

sebp

sesp

15-410, F'04

swap Setup #3

Entering Resulting
Stack Stack
<4+— Sebp
&zip2 YP
&zipl Xp
Rth adr [«— %esp Rtn adr
Old sebp[¢— %ebp
Old $ebx|¢+— %esp

swap:
pushl %ebp
movl %esp, $Sebp
pushl $%ebx

-21 - 15-410, F'04

Effect of swap Setup

Entering
Stack

—

&zip2

&zipl

Rtn adr

4—

movl 8 (%ebp), sedx

sebp

sesp

Resulting
Stack
Offset
(relative to $ebp)
12 ypP
8 Xp
4 | Rtn adr

0 |Old $ebp[¢— %ebp

Old 3ebx|¢+— %esp

movl 12 (%ebp), %ecx # get yp
get xp Body

_2) .

15-410, F'04

swap Finish #1

swap 'S
Stack .
Offset)
12 ypP
8 Xp
4 | Rtn adr
0 |Old sebpl¢— %ebp
-4 |Old $ebx|¢— %esp
Observation

= Saved & restored register 3ebx

_23 .

Offset
12

-4

yp

Xp

Rtn adr

Old 2ebpl¢¥— %ebp

Old $ebx[¢— %esp

movl -4 (%ebp) 6 Sebx
movl %ebp, $Sesp
popl %ebp

ret

15-410, F'04

swap FInish

swap 'S

Stack

Offset
12

_24 -

yp

Xp

Rtn adr

Old %ebp

<_

Old $ebx

4—

sebp

sesp

swap 'S

Stack

Offset

12
8
4
0

YP
Xp
Rtn adr
Old sebp sebp

sesp

movl -4 (%ebp) ,h Sebx
movl %ebp, $esp
popl %ebp

ret

15-410, F'04

swap FInish

swap 'S
Stack

Offset

12
8
4
0

_95 -

yp

Xp

Rtn adr

Old %ebp

sebp

sesp

swap 'S
Stack

Offset

12
8
4

l— sebp
YP
Xp
Rtn adr

‘\\~%esp

movl -4 (%ebp) ,h Sebx
movl %ebp, $Sesp

ropl

$ebp

ret

15-410, F'04

swap’ S l— sebp
Stack .
Offset)
12 ypP
8 Xp
4 | Rtn adr
‘\\~%esp
Observation

swap FInish

= Saved & restored register 3ebx
= Didn't do so for 3eax, $ecx, Oor $edx

<4+— Sebp

Exiting
Stack

&zip2

&zipl

+— S3esp

movl -4 (%ebp) ,h Sebx
movl %ebp, $Sesp
popl %ebp

ret

15-410, F'04

Register Saving Conventions

When procedure yoo calls who:

yoo is the caller, who is the callee

Can Register be Used for Temporary Storage?

yoo:

who:

e o o

movl $15213, %edx
call who

addl %edx, %eax

ret

movl 8 (%ebp), %edx
addl $91125, $%edx

ret

= Contents of register $edx overwritten by who
= yoo's computation isn't going to go well.

-7 - 15-410, F'04

Register Saving Conventions

When procedure yoo calls who:
= yoo is the caller, who is the callee

Can Register be Used for Temporary Storage?

Conventions

= “Caller Save”
= Caller saves temporary in its frame before calling

= “Callee Save”
= Callee saves temporary in its frame before using

_08 -

15-410, F'04

IA32/Linux Register Usage

Integer Registers

= Two have special uses —
" ‘%ebp, esp Caller-Save)
= Three managed as Temporaries
callee-save _
—

= %ebx, $Sesi, Sedi

= Old values saved on Callee-Save
stack prior to using Temporaries =

= Three managed as

N—
caller-save —
= %eax, $edx, $ecx Special <
= Do what you please, ~—

but expect any callee
to do so, as well
= Register seax also
_79 . stores returned value

%$eax

$edx

%$ecx

$ebx

%$esi

$edi

sesp

sebp

15-410, F'04

Stack Summary

The Stack Makes Recursion Work

= Private storage for each instance of procedure call
= Instantiations don't clobber each other

= Addressing of locals + arguments can be relative to stack
positions

= Can be managed by stack discipline
= Procedures return in inverse order of calls

IA32 Procedures Combination of Instructions +
Conventions

= Call / Ret instructions

= Register usage conventions
= Caller / Callee save
= %ebp and %esp

= Stack frame organization conventions
- 30 - 15-410, F'04

Before & After main ()

int main(int argec, char *argv[]) ({
if (argec > 1) {
printf (“$s\n”, argv([l]);
} else {
char *av[3] = { 0, O, O };

av[0] = argv[0]; av[l] = “Fred”;

execvp (av[0], av);
}
return (1);

}31-

15-410, F'04

The Mysterious Parts

argc, argv
= Strings from one program
= Available while another program is running
= Which part of the memory map are they in?
= How did they get there?

What happens when main () does “return(1)” ?
= There's no more program to run...right?
= Where does the 1 go?
= How does it get there?

410 students should seek to abolish mystery

32

15-410, F'04

The Mysterious Parts

argc, argv

= Strings from one program
Available while another program is running
Inter-process sharing/information transfer is OS's job

Traditionally placed “below bottom of stack”

arg
vector
malin ()

printf ()

-33 -

OS copies strings from old address space to new in exec()

15-410, F'04

The Mysterious Parts

What happens when main () does “return (1) ”???
= Defined to have same effect as “exit (1)”

The “main() wrapper”
= Receives argc, argv from OS
= Calls main(), then calls exit()
= Provided by C library, traditionally in “crt0.s”
= Often has a “strange” name

/* not actual code */
void ~~main(int argc, char *argv|[]) {

exit (main (arge, argv));

_}34 _ 15-410, F'04

Some Mysteries Deferred

Who calls ~~main()?
= How does it get passed the address & length of the vector?
= (Who builds that very first stack frame?)

How can ~~main() be found?
= The code has an address “somewhere in the program”
= How does exec() know where that address is?

These will all become clear in Project 3

- 35 - 15-410, F'04

Project O - “Stack Crawler”

C/Assembly function
= Can be called by any C function
= Prints stack frames in a symbolic way

—-——Stack
Function
Function
Function
Function

Function

Key questions

Trace Follows——-
fun3(c='c', d=2.0900004),
fun2 (£=35.000000£f), in
funl (count=0), in

funl (count=1), in

funl (count=2), in

= How do | know 0x80334720 is “funl”?
= How do | know fun3()'s second parameter is “d”?

in

15-410, F'04

Project 0 “Data Flow”

fun.c

th.c

tb_globals.c

symbol-table array

A

many slots (blank)

-37 -

15-410, F'04

Project 0 “Data Flow”

- 38 -

fun.o

th.o

tb_globals.o

15-410, F'04

Project 0 “Data Flow”

tb_globals.o

debugger 1info

-39 - 15-410, F'04

Project 0 “Data Flow”

mutate

tb_globals.o

debugger 1info

simplify

- 40 - 15-410, F'04

Summary

Review of stack knowledge

What makes main () special

Project 0 overview

Start interviewing Project 2/3/4 partners!

_41] -

15-410, F'04

