
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Optimization

15-213/15-513/14-513: Introduction to Computer Systems
15th Lecture, October 24, 2023

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Malloc Lab and Code Reviews

 Malloc Deadlines
▪ Checkpoint due Tuesday October 31

▪ Final Submission due Tuesday November 7

 Malloc (Final) Bootcamp
▪ Sunday October 29 (see Piazza for more details)

▪ Most helpful if you have finished the checkpoint (or are close)

 Code Reviews
▪ All labs from cache lab onwards will be code reviewed one-on-one

▪ You must make an appointment with a TA for this part of the grade

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Machine-dependent optimization

 Benchmark example

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Back in the Good Old Days,
when the term "software" sounded funny
and Real Computers were made out of drums
 and vacuum tubes,
Real Programmers wrote in machine code.

Not FORTRAN. Not RATFOR. Not, even,
 assembly language.

Machine Code.

Raw, unadorned, inscrutable hexadecimal numbers. Directly.

 — “The Story of Mel, a Real Programmer”

 Ed Nather, 1983

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Rear Admiral Grace Hopper

▪ First person to find an
actual bug (a moth)

▪ Invented first compiler in
1951 (precursor to COBOL)

▪ “I decided data processors
ought to be able to write
their programs in English,
and the computers would
translate them into
machine code”

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

John Backus

▪ Developed FORTRAN in
1957 for the IBM 704

▪ Oldest machine-
independent programming
language still in use today

▪ “Much of my work has
come from being lazy. I
didn't like writing
programs, and so, when I
was working on the IBM
701, I started work on a
programming system to
make it easier to write
programs”

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fran Allen

▪ Pioneer of many optimizing
compilation techniques

▪ Wrote a paper in 1966 that
introduced the concept of
the control flow graph,
which is still central to
compiler theory today

▪ First woman to win the
ACM Turing Award

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Goals of compiler optimization

 Minimize number of instructions
▪ Don’t do calculations more than once

▪ Don’t do unnecessary calculations at all

▪ Avoid slow instructions (multiplication, division)

 Avoid waiting for memory
▪ Keep everything in registers whenever possible

▪ Access memory in cache-friendly patterns

▪ Load data from memory early, and only once

 Avoid branching
▪ Don’t make unnecessary decisions at all

▪ Make it easier for the CPU to predict branch destinations

▪ “Unroll” loops to spread cost of branches over more instructions

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limits to compiler optimization

 Generally cannot improve algorithmic complexity
▪ Only constant factors, but those can be worth 10x or more…

 Must not cause any change in program behavior
▪ Programmer may not care about “edge case” behavior,

but compiler does not know that

▪ Exception: language may declare some changes acceptable

 Often only analyze one function at a time
▪ Whole-program analysis (“LTO”) expensive but gaining popularity

▪ Exception: inlining merges many functions into one

 Tricky to anticipate run-time inputs
▪ Profile-guided optimization can help with common case, but…

▪ “Worst case” performance can be just as important as “normal”

▪ Especially for code exposed to malicious input
(e.g. network servers)

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two kinds of optimizations

 Local optimizations
work inside a single
basic block
▪ Constant folding,

strength reduction, dead
code elimination, (local)
CSE, …

 Global optimizations
process the entire
control flow graph of a
function
▪ Loop transformations,

code motion, (global)
CSE, …

setup

Easy?

entry

easy complex

loop

Done?

exit

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Machine-dependent optimization

 Benchmark example

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next several slides done live…

 https://godbolt.org/z/Es5s8qsvj

 Go to Godbolt (the compiler explorer) to play around with
C and the resulting assembly generated under different
compiler optimizations (change the flag from –O3 to –Og,
etc. to see more or less aggressive optimization).

 If you missed class, all of the concepts we explored during
the live demo are explained in the next few slides, so
peek at them and then try playing with the compiler
explorer!

https://godbolt.org/z/Es5s8qsvj

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant folding

 Do arithmetic in the compiler

long mask = 0xFF << 8; →
long mask = 0xFF00;

 Any expression with constant inputs can be folded

 Might even be able to remove library calls…

size_t namelen = strlen("Harry Bovik"); →
size_t namelen = 11;

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dead code elimination

 Don’t emit code that will never be executed

if (0) { puts("Kilroy was here"); }
if (1) { puts("Only bozos on this bus"); }

 Don’t emit code whose result is overwritten

x = 23;
x = 42;

 These may look silly, but...
▪ Can be produced by other optimizations

▪ Assignments to x might be far apart

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common subexpression elimination

 Factor out repeated calculations, only do them once

norm[i] = v[i].x*v[i].x + v[i].y*v[i].y;

 →

elt = &v[i];

x = elt->x;

y = elt->y;

norm[i] = x*x + y*y;

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code motion

 Move calculations out of a loop

 Only valid if every iteration would produce same result

long j;
for (j = 0; j < n; j++)
 a[n*i+j] = b[j];

 →
long j;

int ni = n*i;
for (j = 0; j < n; j++)
 a[ni+j] = b[j];

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining

 Copy body of a function into its caller(s)
▪ Can create opportunities for many other optimizations

▪ Can make code much bigger and therefore slower (size; i-cache)

int pred(int x) {
 if (x == 0)
 return 0;
 else
 return x - 1;
}

int func(int y) {
 return pred(y)
 + pred(0)
 + pred(y+1);
}

int func(int y) {

 int tmp;

 if (y == 0) tmp = 0; else tmp = y - 1;

 if (0 == 0) tmp += 0; else tmp += 0 - 1;

 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

 return tmp;

}

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining

 Copy body of a function into its caller(s)
▪ Can create opportunities for many other optimizations

▪ Can make code much bigger and therefore slower

int pred(int x) {
 if (x == 0)
 return 0;
 else
 return x - 1;
}

int func(int y) {
 return pred(y)
 + pred(0)
 + pred(y+1);
}

int func(int y) {

 int tmp;

 if (y == 0) tmp = 0; else tmp = y - 1;

 if (0 == 0) tmp += 0; else tmp += 0 - 1;

 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

 return tmp;

}

Always true Does nothing Can constant fold

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining

 Copy body of a function into its caller(s)
▪ Can create opportunities for many other optimizations

▪ Can make code much bigger and therefore slower

int func(int y) {

 int tmp;

 if (y == 0) tmp = 0; else tmp = y - 1;

 if (0 == 0) tmp += 0; else tmp += 0 - 1;

 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

 return tmp;

}

int func(int y) {

 int tmp = 0;

 if (y != 0) tmp = y - 1;

 if (y != -1) tmp += y;

 return tmp;

}

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Machine-dependent optimization

 Benchmark example

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

Memory Aliasing

▪ Code updates b[i] on every iteration

▪ Why couldn’t compiler optimize this away?

movq $0, (%rsi)
 pxor %xmm0, %xmm0
.L4:
 addsd (%rdi), %xmm0
 movsd %xmm0, (%rsi)
 addq $8, %rdi
 cmpq %rcx, %rdi
 jne .L4

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

Memory Aliasing

▪ Code updates b[i] on every iteration

▪ Must consider possibility that these updates will affect program behavior

double A[9] =

 { 0, 1, 2,

 4, 8, 16},

 32, 64, 128};

double B[3] = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:
double A[9] =

 { 0, 1, 2,

 0, 8, 16},

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 0, 8, 16},

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 1, 8, 16},

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 8, 16},

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 0, 16},

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 3, 16},

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 6, 16},

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 22, 16},

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 22, 0},

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 22, 32},

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 22, 96},

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 22, 224},

 32, 64, 128};

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

▪ Use a local variable for intermediate results

▪ Use restrict keyword

▪ Tells compiler that this is the “only” pointer to that memory location

pxor %xmm0, %xmm0
.L4:
 addsd (%rdi), %xmm0
 addq $8, %rdi
 cmpq %rax, %rdi
 jne .L4
 movsd %xmm0, (%rsi)

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows2(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {

double val = 0;
 for (j = 0; j < n; j++)
 val += a[i*n + j];

b[i] = val;
 }
}

Avoiding Aliasing Penalties

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Can’t move function calls out of loops

void lower_quadratic(char *s) {

 size_t i;

 for (i = 0; i < strlen(s); i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] += 'a' - 'A';

}

void lower_still_quadratic(char *s) {

 size_t i, n = strlen(s);

 for (i = 0; i < n; i++)

 if (s[i] >= 'A' && s[i] <= 'Z') {

 s[i] += 'a' - 'A';

 n = strlen(s);

 }

}

void lower_linear(char *s) {

 size_t i, n = strlen(s);

 for (i = 0; i < n; i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] += 'a' - 'A';

} Lots more examples of this kind of bug:
accidentallyquadratic.tumblr.com

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Can’t move function calls out of loops

void lower_quadratic(char *s) {

 size_t i;

 for (i = 0; i < strlen(s); i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] += 'a' - 'A';

}

void lower_still_quadratic(char *s) {

 size_t i, n = strlen(s);

 for (i = 0; i < n; i++)

 if (s[i] >= 'A' && s[i] <= 'Z') {

 s[i] += 'a' - 'A’;

 n = strlen(s);

 }

}

void lower_linear(char *s) {

 size_t i, n = strlen(s);

 for (i = 0; i < n; i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] += 'a' - 'A';

}

after

each

change

every

iteration

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz

https://canvas.cmu.edu/courses/37116/quizzes/109916

https://canvas.cmu.edu/courses/37116/quizzes/109916

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Strength Reduction

 x = y * 4 → x = y << 2

 Replace expensive operations with cheaper ones

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Machine-dependent optimization

 Benchmark example

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

If the CPU has to wait for the result of the cmp before continuing
to fetch instructions, may waste tens of cycles doing nothing!

404663: mov $0x0,%eax

404668: cmp (%rdi),%rsi

40466b: jge 404685

40466d: mov 0x8(%rdi),%rax

. . .

404685: repz retq

Branches Are A Challenge

Executing

Need to know
which way to
branch …

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Guess which way branch will go
▪ Begin executing instructions at predicted position

▪ But don’t actually modify register or memory data

404663: mov $0x0,%eax

404668: cmp (%rdi),%rsi

40466b: jge 404685

40466d: mov 0x8(%rdi),%rax

. . .

404685: repz retq

Branch Prediction

Predict Taken

Continue
Fetching
Here

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

Branch Prediction Through Loop
401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume
array length = 100

Read
invalid
location

Executed

Fetched

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume
array length = 100

Branch Misprediction Invalidation

Invalidate

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Misprediction Recovery

 Performance Cost
▪ Multiple clock cycles on modern processor

▪ Can be a major performance limiter

401029: mulsd (%rdx),%xmm0,%xmm0

40102d: add $0x8,%rdx

401031: cmp %rax,%rdx

401034: jne 401029

401036: jmp 401040

. . .

401040: movsd %xmm0,(%r12)

i = 99 Definitely not taken

Reload
Pipeline

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Prediction Numbers

 A simple heuristic:
▪ Backwards branches are often loops, so predict taken

▪ Forwards branches are often ifs, so predict not taken

▪ >95% prediction accuracy just with this!

 Fancier algorithms track behavior of each branch
▪ Subject of ongoing research

▪ 2011 record (https://www.jilp.org/jwac-2/program/JWAC-2-
program.htm): 34.1 mispredictions per 1000 instructions

▪ Current research focuses on the remaining handful of
“impossible to predict” branches (strongly data-dependent,
no correlation with history)

▪ e.g. https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf

https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimizing for Branch Prediction

 Reduce # of branches

▪ Transform loops

▪ Unroll loops

▪ Use conditional moves
▪ Not always a good idea

 Make branches
predictable

▪ Sort data
https://stackoverflow.com/questions/11227809

▪ Avoid indirect branches
▪ function pointers

▪ virtual methods

.Loop:
 movzbl 0(%rbp,%rbx), %edx
 leal -65(%rdx), %ecx
 cmpb $25, %cl
 ja .Lskip
 addl $32, %edx
 movb %dl, 0(%rbp,%rbx)
.Lskip:
 addl $1, %rbx
 cmpq %rax, %rbx
 jb .Loop

.Loop:
 movzbl 0(%rbp,%rbx), %edx

movl %edx, %esi
 leal -65(%rdx), %ecx
 addl $32, %edx
 cmpb $25, %cl

cmova %esi, %edx
 movb %dl, 0(%rbp,%rbx)
 addl $1, %rbx
 cmpq %rax, %rbx
 jb .Loop

Memory write
now

unconditional!

https://stackoverflow.com/questions/11227809

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolling

 Amortize cost of loop condition by duplicating body

 Creates opportunities for CSE, code motion, scheduling

 Prepares code for vectorization

 Can hurt performance by increasing code size

for (size_t i = 0; i < nelts; i++) {
 A[i] = B[i]*k + C[i];
}

for (size_t i = 0; i < nelts - 4; i += 4) {
 A[i] = B[i]*k + C[i];

A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];

}

When would this change be incorrect?

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scheduling

 Rearrange instructions to make it easier for the CPU
to keep all functional units busy

 For instance, move all the loads to the top of an
unrolled loop
▪ Now maybe it’s more obvious why we need lots of registers

for (size_t i = 0; i < nelts - 4; i += 4) {
B0 = B[i]; B1 = B[i+1]; B2 = B[i+2]; B3 = B[i+3];
C0 = C[i]; C1 = C[i+1]; C2 = C[i+2]; C3 = B[i+3];

 A[i] = B0*k + C0;
 A[i+1] = B1*k + C1;
 A[i+2] = B2*k + C2;
 A[i+3] = B3*k + C3;
}

for (size_t i = 0; i < nelts - 4; i += 4) {
 A[i] = B[i]*k + C[i];
 A[i+1] = B[i+1]*k + C[i+1];
 A[i+2] = B[i+2]*k + C[i+2];
 A[i+3] = B[i+3]*k + C[i+3];
}

When would this change be incorrect?

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Machine-dependent optimization

 Benchmark example

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Example: Data Type for Vectors

/* data structure for vectors */

typedef struct{

 size_t len;

 data_t *data;

} vec;

/* retrieve vector element

 and store at val */

int get_vec_element

 (*vec v, size_t idx, data_t *val)

{

 if (idx >= v->len)

 return 0;

 *val = v->data[idx];

 return 1;

}

len

data

0 1 len-1

 Data Types
▪ Use different declarations

for data_t

▪ int

▪ long

▪ float

▪ double

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Computation

 Data Types
▪ Use different declarations

for data_t

▪ int

▪ long

▪ float

▪ double

 Operations
▪ Use different definitions of

OP and IDENT

▪ + / 0

▪ * / 1

void combine1(vec_ptr v, data_t *dest)

{

 long int i;

 *dest = IDENT;

 for (i = 0; i < vec_length(v); i++) {

 data_t val;

 get_vec_element(v, i, &val);

 *dest = *dest OP val;

 }

}

Compute sum or
product of vector
elements

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cycles Per Element (CPE)
 Convenient way to express performance of program that operates on

vectors or lists

 Length = n

 In our case: CPE = cycles per OP

 Cycles = CPE*n + Overhead
▪ CPE is slope of line

0

500

1000

1500

2000

2500

0 50 100 150 200

C
y
c

le
s

Elements

psum1

Slope = 9.0

psum2

Slope = 6.0

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Performance
void combine1(vec_ptr v, data_t *dest)

{

 long int i;

 *dest = IDENT;

 for (i = 0; i < vec_length(v); i++) {

 data_t val;

 get_vec_element(v, i, &val);

 *dest = *dest OP val;

 }

}

Compute sum or
product of vector
elements

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Results in CPE (cycles per element)

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Basic Optimizations

 Move vec_length out of loop

 Avoid bounds check on each cycle

 Accumulate in temporary

void combine4(vec_ptr v, data_t *dest)

{

 long i;

 long length = vec_length(v);

 data_t *d = get_vec_start(v);

 data_t t = IDENT;

 for (i = 0; i < length; i++)

 t = t OP d[i];

 *dest = t;

}

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Effect of Basic Optimizations

void combine4(vec_ptr v, data_t *dest)

{

 long i;

 long length = vec_length(v);

 data_t *d = get_vec_start(v);

 data_t t = IDENT;

 for (i = 0; i < length; i++)

 t = t OP d[i];

 *dest = t;

}

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Combine4 1.27 3.01 3.01 5.01

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolling

void unroll2a_combine(vec_ptr v, data_t *dest)

{

 long length = vec_length(v);

 long limit = length-1;

 data_t *d = get_vec_start(v);

 data_t x0 = IDENT;

 data_t x1 = IDENT;

 long i;

 /* Combine 2 elements at a time */

 for (i = 0; i < limit; i+=2) {

 x0 = x0 OP d[i];

 x1 = x1 OP d[i+1];

 }

 /* Finish any remaining elements */

 for (; i < length; i++) {

 x0 = x0 OP d[i];

 }

 *dest = x0 OP x1;

}

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolled Assembly

 Remember modern CPU designs
▪ Multiple functional units

 So how many cycles should this loop take to execute?

.L3:

 imulq (%rdx), %rcx

 addq $16, %rdx

 imulq -8(%rdx), %rdi

 cmpq %r8, %rdx

 jne .L3

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Effect of Loop Unrolling

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Combine4 1.27 3.01 3.01 5.01

Unroll 0.81 1.51 1.51 2.51

Multiple
instructions
every cycle!

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Going Further

 Compiler optimizations are an easy gain
▪ 20 CPE down to 3-5 CPE

 With careful hand tuning and computer architecture
knowledge
▪ 4-16 elements per cycle

▪ Newest compilers are closing this gap

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary: Getting High Performance

 Good compiler and flags

 Don’t do anything sub-optimal
▪ Watch out for hidden algorithmic inefficiencies

▪ Write compiler-friendly code

▪ Watch out for optimization blockers:
procedure calls & memory references

▪ Look carefully at innermost loops (where most work is done)

 Tune code for machine
▪ Exploit instruction-level parallelism

▪ Avoid unpredictable branches

▪ Make code cache friendly

	Slide 1: Code Optimization 15-213/15-513/14-513: Introduction to Computer Systems 15th Lecture, October 24, 2023
	Slide 2: Malloc Lab and Code Reviews
	Slide 3: Today
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Goals of compiler optimization
	Slide 9: Limits to compiler optimization
	Slide 10: Two kinds of optimizations
	Slide 11: Today
	Slide 12: Next several slides done live…
	Slide 13: Constant folding
	Slide 14: Dead code elimination
	Slide 15: Common subexpression elimination
	Slide 16: Code motion
	Slide 17: Inlining
	Slide 18: Inlining
	Slide 19: Inlining
	Slide 20: Today
	Slide 21: Memory Aliasing
	Slide 22: Memory Aliasing
	Slide 23
	Slide 24: Can’t move function calls out of loops
	Slide 25: Can’t move function calls out of loops
	Slide 26: Quiz
	Slide 27: Strength Reduction
	Slide 28: Today
	Slide 29: Modern CPU Design
	Slide 30: Branches Are A Challenge
	Slide 31: Branch Prediction
	Slide 32: Branch Prediction Through Loop
	Slide 33: Branch Misprediction Invalidation
	Slide 34: Branch Misprediction Recovery
	Slide 35: Branch Prediction Numbers
	Slide 36: Optimizing for Branch Prediction
	Slide 37: Loop Unrolling
	Slide 38: Scheduling
	Slide 39: Today
	Slide 40: Benchmark Example: Data Type for Vectors
	Slide 41: Benchmark Computation
	Slide 42: Cycles Per Element (CPE)
	Slide 43: Benchmark Performance
	Slide 44: Basic Optimizations
	Slide 45: Effect of Basic Optimizations
	Slide 46: Loop Unrolling
	Slide 47: Loop Unrolled Assembly
	Slide 48: Effect of Loop Unrolling
	Slide 49: Going Further
	Slide 50: Summary: Getting High Performance

