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Malloc Lab and Code Reviews

 Malloc Deadlines
▪ Checkpoint due Tuesday October 31

▪ Final Submission due Tuesday November 7

 Malloc (Final) Bootcamp
▪ Sunday October 29 (see Piazza for more details)

▪ Most helpful if you have finished the checkpoint (or are close)

 Code Reviews
▪ All labs from cache lab onwards will be code reviewed one-on-one

▪ You must make an appointment with a TA for this part of the grade
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Today

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Machine-dependent optimization

 Benchmark example
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Back in the Good Old Days,
when the term "software" sounded funny
and Real Computers were made out of drums
    and vacuum tubes,
Real Programmers wrote in machine code.

Not FORTRAN.  Not RATFOR.  Not, even,
    assembly language.

Machine Code.

Raw, unadorned, inscrutable hexadecimal numbers. Directly.

  — “The Story of Mel, a Real Programmer”

       Ed Nather, 1983
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Rear Admiral Grace Hopper

▪ First person to find an 
actual bug (a moth)

▪ Invented first compiler in 
1951 (precursor to COBOL)

▪ “I decided data processors 
ought to be able to write 
their programs in English, 
and the computers would 
translate them into 
machine code”
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John Backus

▪ Developed FORTRAN in 
1957 for the IBM 704

▪ Oldest machine-
independent programming 
language still in use today

▪ “Much of my work has 
come from being lazy. I 
didn't like writing 
programs, and so, when I 
was working on the IBM 
701, I started work on a 
programming system to 
make it easier to write 
programs”
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Fran Allen

▪ Pioneer of many optimizing 
compilation techniques

▪ Wrote a paper in 1966 that 
introduced the concept of 
the control flow graph, 
which is still central to 
compiler theory today

▪ First woman to win the 
ACM Turing Award
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Goals of compiler optimization

 Minimize number of instructions
▪ Don’t do calculations more than once

▪ Don’t do unnecessary calculations at all

▪ Avoid slow instructions (multiplication, division)

 Avoid waiting for memory
▪ Keep everything in registers whenever possible

▪ Access memory in cache-friendly patterns

▪ Load data from memory early, and only once

 Avoid branching
▪ Don’t make unnecessary decisions at all

▪ Make it easier for the CPU to predict branch destinations

▪ “Unroll” loops to spread cost of branches over more instructions
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Limits to compiler optimization

 Generally cannot improve algorithmic complexity
▪ Only constant factors, but those can be worth 10x or more…

 Must not cause any change in program behavior
▪ Programmer may not care about “edge case” behavior,

but compiler does not know that

▪ Exception: language may declare some changes acceptable

 Often only analyze one function at a time
▪ Whole-program analysis (“LTO”) expensive but gaining popularity

▪ Exception: inlining merges many functions into one

 Tricky to anticipate run-time inputs
▪ Profile-guided optimization can help with common case, but…

▪ “Worst case” performance can be just as important as “normal”

▪ Especially for code exposed to malicious input
(e.g. network servers)
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Two kinds of optimizations

 Local optimizations 
work inside a single 
basic block 
▪ Constant folding, 

strength reduction, dead 
code elimination, (local) 
CSE, …

 Global optimizations 
process the entire 
control flow graph of a 
function
▪ Loop transformations, 

code motion, (global) 
CSE, …

setup

Easy?

entry

easy complex

loop

Done?

exit
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Today

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Machine-dependent optimization

 Benchmark example
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Next several slides done live…

 https://godbolt.org/z/Es5s8qsvj

 Go to Godbolt (the compiler explorer) to play around with 
C and the resulting assembly generated under different 
compiler optimizations (change the flag from –O3 to –Og, 
etc. to see more or less aggressive optimization).

 If you missed class, all of the concepts we explored during 
the live demo are explained in the next few slides, so 
peek at them and then try playing with the compiler 
explorer!

https://godbolt.org/z/Es5s8qsvj
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Constant folding

 Do arithmetic in the compiler

long mask = 0xFF << 8;    →
long mask = 0xFF00;

 Any expression with constant inputs can be folded

 Might even be able to remove library calls…

size_t namelen = strlen("Harry Bovik");   →
size_t namelen = 11;
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Dead code elimination

 Don’t emit code that will never be executed

if (0) { puts("Kilroy was here"); }
if (1) { puts("Only bozos on this bus"); }

 Don’t emit code whose result is overwritten

x = 23;
x = 42;

 These may look silly, but...
▪ Can be produced by other optimizations

▪ Assignments to x might be far apart
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Common subexpression elimination

 Factor out repeated calculations, only do them once

norm[i] = v[i].x*v[i].x + v[i].y*v[i].y;

  →  

elt = &v[i];

x = elt->x;

y = elt->y;

norm[i] = x*x + y*y;
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Code motion

 Move calculations out of a loop

 Only valid if every iteration would produce same result

long j;
for (j = 0; j < n; j++)
    a[n*i+j] = b[j];

 →
long j;

int ni = n*i;
for (j = 0; j < n; j++)
    a[ni+j] = b[j];
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Inlining

 Copy body of a function into its caller(s)
▪ Can create opportunities for many other optimizations

▪ Can make code much bigger and therefore slower (size; i-cache)

int pred(int x) {
    if (x == 0)
        return 0;
    else
        return x - 1;
}

int func(int y) {
    return pred(y)
         + pred(0)
         + pred(y+1);
} 

int func(int y) {

  int tmp;

  if (y == 0) tmp = 0; else tmp = y - 1;

  if (0 == 0) tmp += 0; else tmp += 0 - 1;

  if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

  return tmp;

} 
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Inlining

 Copy body of a function into its caller(s)
▪ Can create opportunities for many other optimizations

▪ Can make code much bigger and therefore slower

int pred(int x) {
    if (x == 0)
        return 0;
    else
        return x - 1;
}

int func(int y) {
    return pred(y)
         + pred(0)
         + pred(y+1);
} 

int func(int y) {

  int tmp;

  if (y == 0) tmp = 0; else tmp = y - 1;

  if (0 == 0) tmp += 0; else tmp += 0 - 1;

  if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

  return tmp;

} 

Always true Does nothing Can constant fold
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Inlining

 Copy body of a function into its caller(s)
▪ Can create opportunities for many other optimizations

▪ Can make code much bigger and therefore slower

int func(int y) {

  int tmp;

  if (y == 0) tmp = 0; else tmp = y - 1;

  if (0 == 0) tmp += 0; else tmp += 0 - 1;

  if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

  return tmp;

} 

int func(int y) {

  int tmp = 0;

  if (y != 0) tmp = y - 1;

  if (y != -1) tmp += y;

  return tmp;

} 
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Today

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Machine-dependent optimization

 Benchmark example
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/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
     b[i] += a[i*n + j];
    }
}

Memory Aliasing

▪ Code updates b[i] on every iteration

▪ Why couldn’t compiler optimize this away?

movq    $0, (%rsi)
        pxor    %xmm0, %xmm0
.L4:
        addsd   (%rdi), %xmm0
        movsd   %xmm0, (%rsi)
        addq    $8, %rdi
        cmpq    %rcx, %rdi
        jne     .L4



Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
     b[i] += a[i*n + j];
    }
}

Memory Aliasing

▪ Code updates b[i] on every iteration

▪ Must consider possibility that these updates will affect program behavior

double A[9] = 

  { 0,   1,   2,

    4,   8,  16},

   32,  64, 128};

double B[3] = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init:  [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:
double A[9] = 

  { 0,   1,   2,

    0,   8,  16},

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    0,   8,  16},

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    1,   8,  16},

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,   8,  16},

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,   0,  16},

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,   3,  16},

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,   6,  16},

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  22,  16},

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  22,   0},

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  22,  32},

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  22, 96},

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  22, 224},

   32,  64, 128};
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▪ Use a local variable for intermediate results

▪ Use restrict keyword

▪ Tells compiler that this is the “only” pointer to that memory location 

pxor    %xmm0, %xmm0
.L4:
        addsd   (%rdi), %xmm0
        addq    $8, %rdi
        cmpq    %rax, %rdi
        jne     .L4
        movsd   %xmm0, (%rsi)

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows2(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {

double val = 0;
 for (j = 0; j < n; j++)
 val += a[i*n + j];

b[i] = val;
    }
}

Avoiding Aliasing Penalties
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Can’t move function calls out of loops

void lower_quadratic(char *s) {

  size_t i;

  for (i = 0; i < strlen(s); i++)

    if (s[i] >= 'A' && s[i] <= 'Z')

      s[i] += 'a' - 'A';

}

void lower_still_quadratic(char *s) {

  size_t i, n = strlen(s);

  for (i = 0; i < n; i++)

    if (s[i] >= 'A' && s[i] <= 'Z') {

      s[i] += 'a' - 'A';

      n = strlen(s);

    }

}

void lower_linear(char *s) {

  size_t i, n = strlen(s);

  for (i = 0; i < n; i++)

    if (s[i] >= 'A' && s[i] <= 'Z')

      s[i] += 'a' - 'A';

} Lots more examples of this kind of bug: 
accidentallyquadratic.tumblr.com
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Can’t move function calls out of loops

void lower_quadratic(char *s) {

  size_t i;

  for (i = 0; i < strlen(s); i++)

    if (s[i] >= 'A' && s[i] <= 'Z')

      s[i] += 'a' - 'A';

}

void lower_still_quadratic(char *s) {

  size_t i, n = strlen(s);

  for (i = 0; i < n; i++)

    if (s[i] >= 'A' && s[i] <= 'Z') {

      s[i] += 'a' - 'A’;

      n = strlen(s);

    }

}

void lower_linear(char *s) {

  size_t i, n = strlen(s);

  for (i = 0; i < n; i++)

    if (s[i] >= 'A' && s[i] <= 'Z')

      s[i] += 'a' - 'A';

}
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Quiz

https://canvas.cmu.edu/courses/37116/quizzes/109916 

https://canvas.cmu.edu/courses/37116/quizzes/109916
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Strength Reduction

 x = y * 4 → x = y << 2

 Replace expensive operations with cheaper ones



Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Machine-dependent optimization

 Benchmark example
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Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates
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 Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

If the CPU has to wait for the result of the cmp before continuing 
to fetch instructions, may waste tens of cycles doing nothing!

404663:  mov $0x0,%eax

404668:  cmp (%rdi),%rsi

40466b:  jge 404685

40466d:  mov 0x8(%rdi),%rax

. . .

404685:  repz retq

Branches Are A Challenge

Executing

Need to know
which way to
branch …
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 Guess which way branch will go
▪ Begin executing instructions at predicted position

▪ But don’t actually modify register or memory data

404663:  mov $0x0,%eax

404668:  cmp (%rdi),%rsi

40466b:  jge 404685

40466d:  mov 0x8(%rdi),%rax

. . .

404685:  repz retq

Branch Prediction

Predict Taken

Continue
Fetching
Here
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401029:  mulsd  (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

401029:  mulsd  (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

401029:  mulsd  (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

Branch Prediction Through Loop
401029:  mulsd  (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume 
array length = 100

Read 
invalid 
location

Executed

Fetched
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401029:  mulsd  (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

401029:  mulsd  (%rdx),%xmm0,%xmm0

40102d:  add    $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

401029:  mulsd  (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

401029:  mulsd  (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume 
array length = 100

Branch Misprediction Invalidation

Invalidate
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Branch Misprediction Recovery

 Performance Cost
▪ Multiple clock cycles on modern processor

▪ Can be a major performance limiter

401029:  mulsd (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

401036:  jmp 401040

. . .

401040:  movsd %xmm0,(%r12)

i = 99 Definitely not taken

Reload
Pipeline
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Branch Prediction Numbers

 A simple heuristic:
▪ Backwards branches are often loops, so predict taken 

▪ Forwards branches are often ifs, so predict not taken

▪ >95% prediction accuracy just with this!

 Fancier algorithms track behavior of each branch
▪ Subject of ongoing research

▪ 2011 record (https://www.jilp.org/jwac-2/program/JWAC-2-
program.htm): 34.1 mispredictions per 1000 instructions

▪ Current research focuses on the remaining handful of
“impossible to predict” branches (strongly data-dependent,
no correlation with history)

▪ e.g. https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf

https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf
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Optimizing for Branch Prediction

 Reduce # of branches

▪ Transform loops

▪ Unroll loops

▪ Use conditional moves
▪ Not always a good idea

 Make branches 
predictable

▪ Sort data 
https://stackoverflow.com/questions/11227809

▪ Avoid indirect branches
▪ function pointers

▪ virtual methods

.Loop:
    movzbl 0(%rbp,%rbx), %edx
    leal   -65(%rdx), %ecx
    cmpb   $25, %cl
    ja     .Lskip
    addl   $32, %edx
    movb   %dl, 0(%rbp,%rbx)
.Lskip:
    addl   $1, %rbx
    cmpq   %rax, %rbx
    jb     .Loop

.Loop:
    movzbl 0(%rbp,%rbx), %edx

movl %edx, %esi
    leal   -65(%rdx), %ecx
    addl   $32, %edx
    cmpb   $25, %cl

cmova %esi, %edx
    movb   %dl, 0(%rbp,%rbx)
    addl   $1, %rbx
    cmpq   %rax, %rbx
    jb     .Loop

Memory write 
now 

unconditional!

https://stackoverflow.com/questions/11227809
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Loop Unrolling

 Amortize cost of loop condition by duplicating body

 Creates opportunities for CSE, code motion, scheduling

 Prepares code for vectorization

 Can hurt performance by increasing code size

for (size_t i = 0; i < nelts; i++) {
    A[i] = B[i]*k + C[i];
}

for (size_t i = 0; i < nelts - 4; i += 4) {
    A[i  ] = B[i  ]*k + C[i  ];

A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];

}

When would this change be incorrect?
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Scheduling

 Rearrange instructions to make it easier for the CPU
to keep all functional units busy

 For instance, move all the loads to the top of an
unrolled loop
▪ Now maybe it’s more obvious why we need lots of registers

for (size_t i = 0; i < nelts - 4; i += 4) {
B0 = B[i]; B1 = B[i+1]; B2 = B[i+2]; B3 = B[i+3];
C0 = C[i]; C1 = C[i+1]; C2 = C[i+2]; C3 = B[i+3];

    A[i  ] = B0*k + C0;
    A[i+1] = B1*k + C1;
    A[i+2] = B2*k + C2;
    A[i+3] = B3*k + C3;
}

for (size_t i = 0; i < nelts - 4; i += 4) {
    A[i  ] = B[i  ]*k + C[i  ];
    A[i+1] = B[i+1]*k + C[i+1];
    A[i+2] = B[i+2]*k + C[i+2];
    A[i+3] = B[i+3]*k + C[i+3];
}

When would this change be incorrect?
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Today

 Principles and goals of compiler optimization

 Examples of optimizations

 Obstacles to optimization

 Machine-dependent optimization

 Benchmark example
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Benchmark Example: Data Type for Vectors

/* data structure for vectors */

typedef struct{

 size_t len;

 data_t *data;

} vec;

/* retrieve vector element

   and store at val */

int get_vec_element

  (*vec v, size_t idx, data_t *val)

{

 if (idx >= v->len)

  return 0;

 *val = v->data[idx];

 return 1;

}

len

data

0 1 len-1

 Data Types
▪ Use different declarations 

for data_t

▪ int

▪ long

▪ float

▪ double
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Benchmark Computation

 Data Types
▪ Use different declarations 

for data_t

▪ int

▪ long

▪ float

▪ double

 Operations
▪ Use different definitions of 

OP and IDENT

▪  + / 0

▪  * / 1

void combine1(vec_ptr v, data_t *dest)

{

    long int i;

    *dest = IDENT;

    for (i = 0; i < vec_length(v); i++) {

 data_t val;

 get_vec_element(v, i, &val);

 *dest = *dest OP val;

    }

}

Compute sum or 
product of vector 
elements
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Cycles Per Element (CPE)
 Convenient way to express performance of program that operates on 

vectors or lists

 Length = n

 In our case: CPE = cycles per OP

 Cycles = CPE*n + Overhead
▪ CPE is slope of line

0

500
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2500

0 50 100 150 200

C
y
c

le
s

Elements

psum1

Slope = 9.0

psum2

Slope = 6.0
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Benchmark Performance
void combine1(vec_ptr v, data_t *dest)

{

    long int i;

    *dest = IDENT;

    for (i = 0; i < vec_length(v); i++) {

 data_t val;

 get_vec_element(v, i, &val);

 *dest = *dest OP val;

    }

}

Compute sum or 
product of vector 
elements

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Results in CPE (cycles per element)
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Basic Optimizations

 Move vec_length out of loop

 Avoid bounds check on each cycle

 Accumulate in temporary

void combine4(vec_ptr v, data_t *dest)

{

  long i;

  long length = vec_length(v);

  data_t *d = get_vec_start(v);

  data_t t = IDENT;

  for (i = 0; i < length; i++)

    t = t OP d[i];

  *dest = t;

}
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Effect of Basic Optimizations

void combine4(vec_ptr v, data_t *dest)

{

  long i;

  long length = vec_length(v);

  data_t *d = get_vec_start(v);

  data_t t = IDENT;

  for (i = 0; i < length; i++)

    t = t OP d[i];

  *dest = t;

}

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Combine4 1.27 3.01 3.01 5.01
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Loop Unrolling

void unroll2a_combine(vec_ptr v, data_t *dest)

{

    long length = vec_length(v);

    long limit = length-1;

    data_t *d = get_vec_start(v);

    data_t x0 = IDENT;

    data_t x1 = IDENT;

    long i;

    /* Combine 2 elements at a time */

    for (i = 0; i < limit; i+=2) {

       x0 = x0 OP d[i];

       x1 = x1 OP d[i+1];

    }

    /* Finish any remaining elements */

    for (; i < length; i++) {

 x0 = x0 OP d[i];

    }

    *dest = x0 OP x1;

}
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Loop Unrolled Assembly

 Remember modern CPU designs
▪ Multiple functional units

 So how many cycles should this loop take to execute?

.L3:

        imulq   (%rdx), %rcx

        addq    $16, %rdx

        imulq   -8(%rdx), %rdi

        cmpq    %r8, %rdx

        jne     .L3
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Effect of Loop Unrolling

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Combine4 1.27 3.01 3.01 5.01

Unroll 0.81 1.51 1.51 2.51

Multiple 
instructions 
every cycle!
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Going Further

 Compiler optimizations are an easy gain
▪ 20 CPE down to 3-5 CPE

 With careful hand tuning and computer architecture 
knowledge
▪ 4-16 elements per cycle

▪ Newest compilers are closing this gap
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Summary: Getting High Performance

 Good compiler and flags

 Don’t do anything sub-optimal
▪ Watch out for hidden algorithmic inefficiencies

▪ Write compiler-friendly code

▪ Watch out for optimization blockers: 
procedure calls & memory references

▪ Look carefully at innermost loops (where most work is done)

 Tune code for machine
▪ Exploit instruction-level parallelism

▪ Avoid unpredictable branches

▪ Make code cache friendly
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