
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation:
Advanced Concepts

15-213/14-513/15-513: Introduction to Computer Systems
14th Lecture, October 12, 2023

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

AIV Regret Policy
 AIVs are taken very seriously in this course
 We use sophisticated code analysis tools to detect copying

 Penalties for copying code into your lab submission
 Usually, failure in the course
 Additional departmental/university penalties may be applied

 AIV Regret Policy
 If you have cheated on a lab, you can withdraw your submission by

emailing your professor before you are contacted about an AIV
 You will get 0 on the lab but no other penalties (no negative points,

no recorded AIV, no department/university penalties)

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Dynamic Memory Allocation

 Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at runtime
 For data structures whose size

is only known at runtime

 Dynamic memory allocators
manage an area of process
VM known as the heap

Application

Dynamic Memory Allocator

Heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Run-time heap
(created by malloc)

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g., Red-Black tree) with pointers within

each free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Implicit Lists Summary
 Implementation: very simple
 Allocate cost:
 linear time worst case

 Free cost:
 constant time worst case
 even with coalescing

 Memory Overhead:
 Depends on placement policy
 Strategies include first fit, next fit, and best fit

 Not used in practice for malloc/free because of linear-
time allocation
 used in many special purpose applications

 However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Explicit free lists
 Segregated free lists
 Memory-related perils and pitfalls

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
 Luckily we track only free blocks, so we can use payload area
 The “next” free block could be anywhere

 So we need to store forward/back pointers, not just sizes
 Still need boundary tags for coalescing

 To find adjacent blocks according to memory order

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Optional

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists
 Logically:

 Physically: blocks can be in any order

A B C

32 32 32 32 4848 3232 32 32

Forward (next) links

Back (prev) links

A B

C

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With Explicit Free Lists
 Insertion policy: Where in the free list do you put a newly

freed block?
 Unordered
 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list
 FIFO (first-in-first-out) policy

 Insert freed block at the end of the free list
 Pro: simple and constant time
 Con: studies suggest fragmentation is worse than address ordered

 Address-ordered policy
 Insert freed blocks so that free list blocks are always in address order:

addr(prev) < addr(curr) < addr(next)
 Con: requires search
 Pro: studies suggest fragmentation is lower than LIFO/FIFO

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 1)

 Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic
Allocated Allocated

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 2)

 Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphicAllocated Free

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 3)

 Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
AllocatedFree

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 4)

 Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
Free Free

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit List Summary
 Comparison to implicit list:
 Allocate is linear time in number of free blocks instead of all blocks

 Much faster when most of the memory is full
 Slightly more complicated allocate and free

 Need to splice blocks in and out of the list
 Some extra space for the links (2 extra words needed for each block)

 Does this increase internal fragmentation?

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Explicit free lists
 Segregated free lists
 Memory-related perils and pitfalls

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated List (Seglist) Allocators
 Have several free lists, one for each size class of blocks

 Which blocks go in which size classes is a design decision
 Can have major impact on both utilization and throughput
 Common choices include:
 One class for each small size (16, 32, 48, 64, …)
 At some point switch to powers of two: [2𝑖𝑖 + 1, 2𝑖𝑖+1]

 The list for the largest blocks must have no upper limit
 (well, 264)

16

32-48

64–inf

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator
 Given an array of free lists, each one for some size class

 To allocate a block of size n:
 Search appropriate free list for block of size 𝑚𝑚 ≥ 𝑛𝑛 (i.e., first fit)
 If an appropriate block is found:

 Split block and place fragment on appropriate list
 If no block is found, try next larger class

 Repeat until block is found

 If no block is found:
 Request additional heap memory from OS (using sbrk())
 Allocate block of n bytes from this new memory
 Place remainder as a single free block in appropriate size class.

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator (cont.)
 To free a block:
 Coalesce and place on appropriate list

 Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
 Higher throughput

 log time for power-of-two size classes vs. linear time
 Better memory utilization

 First-fit search of segregated free list approximates a best-fit
search of entire heap.

 Extreme case: Giving each block its own size class is equivalent to
best-fit.

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More Info on Allocators

 D. Knuth, The Art of Computer Programming, vol 1, 3rd edition,
Addison Wesley, 1997
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
 Comprehensive survey
 Available from CS:APP student site (csapp.cs.cmu.edu)

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz

https://canvas.cmu.edu/courses/37116/quizzes/109917

https://canvas.cmu.edu/courses/37116/quizzes/109917

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Explicit free lists
 Segregated free lists
 Memory-related perils and pitfalls

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Related Perils and Pitfalls
 Dereferencing bad pointers
 Reading uninitialized memory
 Overwriting memory
 Referencing nonexistent variables
 Freeing blocks multiple times
 Referencing freed blocks
 Failing to free blocks

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dereferencing Bad Pointers
 The classic scanf bug

int val;

...

scanf("%d", val);

case 'd': {
int *valp = va_arg(ap, int *);
*valp = (int)strtol(valbuf, &endp, 10);

}

Crash here …
if you’re lucky

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Uninitialized Memory
 Assuming that heap data is initialized to zero

 Can avoid by using calloc

/* return y = Ax */
int *matvec(int **A, int *x) {

int *y = malloc(N*sizeof(int));
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];
return y;

}

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
 Allocating the (possibly) wrong sized object

 Can you spot the bug?

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
p[i] = malloc(M*sizeof(int));

}

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
 Off-by-one errors

char **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
p[i] = malloc(M*sizeof(int));

}

char *p;

p = malloc(strlen(s));
strcpy(p,s);

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
 Not checking the max string size

 Basis for classic buffer overflow attacks

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
 Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (p && *p != val)
p += sizeof(int);

return p;
}

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
 Referencing a pointer instead of the object it points to

 What gets decremented?
 (See next slide)

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify(binheap, *size, 0);
return(packet);

}

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
 Referencing a pointer instead of the object it points to

 Same effect as
 size--;

 Rewrite as
 (*size)--;

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify(binheap, *size, 0);
return(packet);

}

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Nonexistent Variables
 Forgetting that local variables disappear when a function

returns

int *foo () {
int val;

return &val;
}

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing Blocks Multiple Times
 Nasty!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);

y = malloc(M*sizeof(int));
<manipulate y>

free(x);

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Freed Blocks
 Evil!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);
...

y = malloc(M*sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)
 Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof(int));
...
return;

}

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)
 Freeing only part of a data structure

struct list {
int val;
struct list *next;

};

foo() {
struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
...
free(head);
return;

}

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dealing With Memory Bugs
 Debugger: gdb
 Good for finding bad pointer dereferences
 Hard to detect the other memory bugs

 Data structure consistency checker
 Runs silently, prints message only on error
 Use as a probe to zero in on error

 Binary translator: valgrind
 Powerful debugging and analysis technique
 Rewrites text section of executable object file
 Checks each individual reference at runtime

 Bad pointers, overwrites, refs outside of allocated block

 glibc malloc contains checking code
 setenv MALLOC_CHECK_ 3

	Dynamic Memory Allocation: �Advanced Concepts��15-213/14-513/15-513: Introduction to Computer Systems�14th Lecture, October 12, 2023
	AIV Regret Policy
	Review: Dynamic Memory Allocation	
	Review: Keeping Track of Free Blocks
	Review: Implicit Lists Summary
	Today
	Keeping Track of Free Blocks
	Explicit Free Lists
	Explicit Free Lists
	Allocating From Explicit Free Lists
	Freeing With Explicit Free Lists
	Freeing With a LIFO Policy (Case 1)
	Freeing With a LIFO Policy (Case 2)
	Freeing With a LIFO Policy (Case 3)
	Freeing With a LIFO Policy (Case 4)
	Explicit List Summary
	Today
	Segregated List (Seglist) Allocators
	Seglist Allocator
	Seglist Allocator (cont.)
	More Info on Allocators
	Quiz
	Today
	Memory-Related Perils and Pitfalls
	Dereferencing Bad Pointers
	Reading Uninitialized Memory
	Overwriting Memory
	Overwriting Memory
	Overwriting Memory
	Overwriting Memory
	Overwriting Memory
	Overwriting Memory
	Referencing Nonexistent Variables
	Freeing Blocks Multiple Times
	Referencing Freed Blocks
	Failing to Free Blocks (Memory Leaks)
	Failing to Free Blocks (Memory Leaks)
	Dealing With Memory Bugs

