Floating Point

15-213/18-213/14-513/15-513/18-613: Introduction to Computer Systems
4th Lecture, Sept. 5, 2019
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Fractional binary numbers

- What is 1011.101_2?
Fractional Binary Numbers

- Representation
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number:
 \[\sum_{k=-j}^{i} b_k \times 2^k \]
Fractional Binary Numbers: Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 3/4</td>
<td>101.11₂</td>
<td>= 4 + 1/2 + 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.111₂</td>
<td>= 2 + 1/2 + 1/4 + 1/8</td>
</tr>
<tr>
<td>1 7/16</td>
<td>1.0111₂</td>
<td>= 1 + 1/4 + 1/8 + 1/16</td>
</tr>
</tbody>
</table>

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...₂ are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \to 1.0$
- Use notation $1.0 - \varepsilon$
Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>$0.0101010101[01]..._2$</td>
</tr>
<tr>
<td>1/5</td>
<td>$0.001100110011[0011]..._2$</td>
</tr>
<tr>
<td>1/10</td>
<td>$0.0001100110011[0011]..._2$</td>
</tr>
</tbody>
</table>

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs
- Some CPUs don’t implement IEEE 754 in full
 e.g., early GPUs, Cell BE processor

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard
Floating Point Representation

- **Numerical Form:**
 \[(-1)^s \, M \, 2^E \]
 - Sign bit \(s \) determines whether number is negative or positive
 - Significand \(M \) normally a fractional value in range \([1.0,2.0)\).
 - Exponent \(E \) weights value by power of two

- **Encoding**
 - MSB \(s \) is sign bit \(s \)
 - \(\text{exp} \) field encodes \(E \) (but is not equal to \(E \))
 - \(\text{frac} \) field encodes \(M \) (but is not equal to \(M \))

Example:
\[
15213_{10} = (-1)^0 \times 1.11011011011012 \times 2^{13}
\]
Precision options

- **Single precision: 32 bits**
 \(\approx 7 \) decimal digits, \(10^{\pm38} \)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8-bits</td>
<td>23-bits</td>
</tr>
</tbody>
</table>

- **Double precision: 64 bits**
 \(\approx 16 \) decimal digits, \(10^{\pm308} \)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-bits</td>
<td>52-bits</td>
</tr>
</tbody>
</table>

- **Other formats: half precision, quad precision**
Three “kinds” of floating point numbers

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>e-bits</td>
<td>f-bits</td>
</tr>
</tbody>
</table>

- **00...00**: denormalized
- **exp ≠ 0 and exp ≠ 11...11**: normalized
- **11...11**: special
“Normalized” Values

- When: \(\exp \neq 000...0 \) and \(\exp \neq 111...1 \)

- Exponent coded as a \textit{biased} value: \(E = \exp - \text{Bias} \)
 - \(\exp \): unsigned value of \(\exp \) field
 - \(\text{Bias} = 2^{k-1} - 1 \), where \(k \) is number of exponent bits
 - Single precision: 127 (\(\exp \): 1...254, \(E \): -126...127)
 - Double precision: 1023 (\(\exp \): 1...2046, \(E \): -1022...1023)

- Significand coded with implied leading 1: \(M = 1.xxx...x_2 \)
 - \(xxx...x \): bits of frac field
 - Minimum when \(\text{frac}=000...0 \) (\(M = 1.0 \))
 - Maximum when \(\text{frac}=111...1 \) (\(M = 2.0 - \epsilon \))
 - Get extra leading bit for “free”

\[v = (-1)^s M 2^E \]
Normalized Encoding Example

■ Value: \(\text{float } F = 15213.0; \)
 - 15213\(_{10} = 11101101101101_2\)
 - \(= 1.1101101101101_2 \times 2^{13} \)

■ Significand

\[
M = \begin{array}{c}
1.1101101101101 \\
\frac{\text{frac}}{110110110110100000000000000_2}
\end{array}
\]

■ Exponent

\[
E = 13 \\
Bias = 127 \\
\exp = 140 = 10001100_2
\]

■ Result:

\[
\begin{array}{ccc}
0 & 10001100 & 110110110110100000000000000
\end{array}
\]

\[v = (-1)^s \, M \, 2^E \]
\[E = \exp - \text{Bias} \]
Denormalized Values

- **Condition:** \(\text{exp} = 000...0 \)

- **Exponent value:** \(E = 1 - \text{Bias} \) (instead of \(\text{exp} - \text{Bias} \)) (why?)

- **Significand coded with implied leading 0:** \(M = 0.xxx...x \)
 - \(xxx...x \): bits of \(\text{frac} \)

- **Cases**
 - \(\text{exp} = 000...0, \text{frac} = 000...0 \)
 - Represents zero value
 - Note distinct values: +0 and −0 (why?)
 - \(\text{exp} = 000...0, \text{frac} \neq 000...0 \)
 - Numbers closest to 0.0
 - Equispaced

\[v = (-1)^s M 2^E \]
\[E = 1 - \text{Bias} \]
Special Values

- **Condition:** $\exp = 111...1$

- **Case:** $\exp = 111...1$, $\frac{\text{c}}{\text{f}} = 000...0$
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

- **Case:** $\exp = 111...1$, $\frac{\text{c}}{\text{f}} \neq 000...0$
 - **Not-a-Number (NaN)**
 - Represents case when no numeric value can be determined
 - E.g., $\sqrt{-1}$, $\infty - \infty$, $\infty \times 0$
C float Decoding Example

float: 0xC0A00000

E = 129
S = 1 (negative number)
M = 1.010 0000 0000 0000 0000 0000

Bias = $2^{k-1} - 1 = 127$

$v = (-1)^s M \cdot 2^E$

$v = \left(-1 \right)^s M \cdot 2^{E - \text{Bias}}$
C float Decoding Example #1

float: 0xC0A00000

binary: 1100 0000 1010 0000 0000 0000 0000 0000

1 1000 0001 010 0000 0000 0000 0000 0000

1 8-bits 23-bits

E =
S =
M = 1.

\[v = (-1)^s \cdot M \cdot 2^E \]

Hex Decimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
C float Decoding Example #1

Float: 0xC0A00000

Binary:

\[
\begin{array}{cccccccccc}
1 & 1000 & 0000 & 1 & 010 & 0000 & 0000 & 0000 & 0000 & 0000 \\
\end{array}
\]

1 8-bits 23-bits

\[E = \exp - \text{Bias} = 129 - 127 = 2\ (\text{decimal})\]

\[S = 1 \rightarrow \text{negative number}\]

\[M = 1.010 0000 0000 0000 0000 0000 0000\]

\[= 1 + 1/4 = 1.25\]

\[v = (-1)^S M 2^E = (-1)^1 \times 1.25 \times 2^2 = -5\]
C float Decoding Example #2

float: 0x001C0000

equivalent binary:

\[
\begin{array}{cccccccccccc}
0 & 0000 & 0000 & 001 & 1100 & 0000 & 0000 & 0000 & 0000 \\
\end{array}
\]

1 8-bits 23-bits

\(E = \)

\(S = \)

\(M = 0.\)

\(v = (-1)^s M 2^E = \)
C float Decoding Example #2

float: 0x001C0000

binary: 0000 0000 0001 1100 0000 0000 0000 0000

E = 1 - Bias = 1 - 127 = -126 (decimal)

S = 0 -> positive number

M = 0.001 1100 0000 0000 0000 0000 0000

= 1/8 + 1/16 + 1/32 = 7/32 = 7*2^-5

v = (-1)^s M 2^E = (-1)^0 * 7*2^-5 * 2^-126 = 7*2^-131

≈ 2.571393892 X 10^-39

Bias = 2^{k-1} - 1 = 127
Visualization: Floating Point Encodings

-∞ ∞

-∞ → -Normalized → -Denorm → +Denorm → +Normalized → +∞

NaN → -0 → +0 → NaN
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the \text{exp}, with a bias of 7
 - the last three bits are the \text{frac}

- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity
Dynamic Range (s=0 only)

<table>
<thead>
<tr>
<th>s exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 0000 001</td>
<td>-6</td>
<td>1/8*1/64</td>
<td>1/512 (close to zero)</td>
</tr>
<tr>
<td>0 0000 010</td>
<td>-6</td>
<td>2/8*1/64</td>
<td>2/512</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0000 110</td>
<td>-6</td>
<td>6/8*1/64</td>
<td>6/512 (largest denorm)</td>
</tr>
<tr>
<td>0 0000 111</td>
<td>-6</td>
<td>7/8*1/64</td>
<td>7/512</td>
</tr>
</tbody>
</table>

Denormalized numbers

\[
v = (-1)^s M 2^E \]

\[
norm: E = \exp - \Bias\]

\[
denorm: E = 1 - \Bias\]

<table>
<thead>
<tr>
<th>s exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0001 000</td>
<td>-6</td>
<td>8/8*1/64</td>
<td>8/512 (smallest norm)</td>
</tr>
<tr>
<td>0 0001 001</td>
<td>-6</td>
<td>9/8*1/64</td>
<td>9/512</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0110 110</td>
<td>-1</td>
<td>14/8*1/2</td>
<td>14/16 (closest to 1 below)</td>
</tr>
<tr>
<td>0 0110 111</td>
<td>-1</td>
<td>15/8*1/2</td>
<td>15/16</td>
</tr>
<tr>
<td>0 0111 000</td>
<td>0</td>
<td>8/8*1</td>
<td>1</td>
</tr>
<tr>
<td>0 0111 001</td>
<td>0</td>
<td>9/8*1</td>
<td>9/8</td>
</tr>
<tr>
<td>0 0111 010</td>
<td>0</td>
<td>10/8*1</td>
<td>10/8</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1110 110</td>
<td>7</td>
<td>14/8*128</td>
<td>224 (largest norm)</td>
</tr>
<tr>
<td>0 1110 111</td>
<td>7</td>
<td>15/8*128</td>
<td>240</td>
</tr>
</tbody>
</table>

Normalized numbers

<table>
<thead>
<tr>
<th>s exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1111 000</td>
<td>n/a</td>
<td>inf</td>
<td></td>
</tr>
</tbody>
</table>
Distribution of Values

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is $2^{3-1}-1 = 3$

- **Notice how the distribution gets denser toward zero.**

- \[\begin{array}{c|c|c}
 & \text{exp} & \text{frac} \\
 \hline
 s & 1 & 3 \text{-bits} \\
 \text{frac} & 2 \text{-bits} \\
 \end{array} \]
Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

![Diagram showing distribution of values with denormalized, normalized, and infinity markers.](image-url)
Special Properties of the IEEE Encoding

- **FP Zero Same as Integer Zero**
 - All bits = 0

- **Can (Almost) Use Unsigned Integer Comparison**
 - Must first compare sign bits
 - Must consider \(-0 = 0\)
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield? The answer is complicated.
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity
Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Floating Point Operations: Basic Idea

- \(x +_f y = \text{Round}(x + y) \)

- \(x \times_f y = \text{Round}(x \times y) \)

Basic idea

- First *compute exact result*
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly *round to fit into frac*
Rounding

Rounding Modes (illustrate with $ rounding)

<table>
<thead>
<tr>
<th></th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>–$1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards zero</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>Round down (−∞)</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Round up (+∞)</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Nearest Even* (default)</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

Round to nearest, but if half-way in-between then round to nearest even
Closer Look at Round-To-Even

Default Rounding Mode
- Hard to get any other kind without dropping into assembly
 - C99 has support for rounding mode management
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

Applying to Other Decimal Places / Bit Positions
- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth
 - 7.8949999 7.89 (Less than half way)
 - 7.8950001 7.90 (Greater than half way)
 - 7.8950000 7.90 (Half way—round up)
 - 7.8850000 7.88 (Half way—round down)
Rounding Binary Numbers

Binary Fractional Numbers
- “Even” when least significant bit is 0
- “Half way” when bits to right of rounding position = 100\ldots_2

Examples
- Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.000112</td>
<td>10.002</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.001102</td>
<td>10.012</td>
<td>(>1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.111002</td>
<td>11.002</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.101002</td>
<td>10.102</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
Rounding

Guard bit: LSB of result

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

Round up conditions

- Round = 1, Sticky = 1 → > 0.5
- Guard = 1, Round = 1, Sticky = 0 → Round to even

<table>
<thead>
<tr>
<th>Fraction</th>
<th>GRS</th>
<th>Incr?</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000000</td>
<td>000</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>1.1010000</td>
<td>100</td>
<td>N</td>
<td>1.101</td>
</tr>
<tr>
<td>1.0001000</td>
<td>010</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>1.0011000</td>
<td>110</td>
<td>Y</td>
<td>1.010</td>
</tr>
<tr>
<td>1.0001010</td>
<td>011</td>
<td>Y</td>
<td>1.001</td>
</tr>
<tr>
<td>1.1111100</td>
<td>111</td>
<td>Y</td>
<td>10.000</td>
</tr>
</tbody>
</table>
FP Multiplication

- \((-1)^{s_1} M_1 \ 2^{E_1} \times (-1)^{s_2} M_2 \ 2^{E_2}\)

- **Exact Result:** \((-1)^s \ M \ 2^E\)
 - Sign \(s:\) \(s_1 \ ^\wedge \ s_2\)
 - Significand \(M:\) \(M_1 \times M_2\)
 - Exponent \(E:\) \(E_1 + E_2\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit \(\text{frac}\) precision

- **Implementation**
 - Biggest chore is multiplying significands

4 bit significand: \(1.010*2^2 \times 1.110*2^3 = 10.0011*2^5\)

\[= 1.00011*2^6 = 1.0011*2^6\]
Floating Point Addition

\[(-1)^{s_1} M_1 \ 2^{E_1} + (-1)^{s_2} M_2 \ 2^{E_2} \]

- Assume \(E_1 > E_2 \)

Exact Result: \((-1)^s \ M \ 2^E \)

- Sign \(s \), significand \(M \):
 - Result of signed align & add
- Exponent \(E \): \(E_1 \)

Fixing

- If \(M \geq 2 \), shift \(M \) right, increment \(E \)
- if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
- Overflow if \(E \) out of range
- Round \(M \) to fit \(\text{frac} \) precision

Get binary points lined up

\[(-1)^{s_1} M_1 + (-1)^{s_2} M_2 \]

\[(\text{result}) = (-1)^s \ M \]

\[\begin{align*}
1.010*2^2 & + 1.110*2^3 = (0.1010 + 1.1100) * 2^3 \\
& = 10.0110 * 2^3 = 1.00110 * 2^4 = 1.010 * 2^4
\end{align*} \]
Mathematical Properties of FP Add

- **Compare to those of Abelian Group**
 - Closed under addition? Yes
 - But may generate infinity or NaN
 - Commutative? Yes
 - Associative? No
 - Overflow and inexactness of rounding
 - \((3.14+1e10)−1e10 = 0, 3.14+(1e10−1e10) = 3.14\)
 - 0 is additive identity? Yes
 - Every element has additive inverse? Almost
 - Yes, except for infinities & NaNs

- **Monotonicity**
 - \(a \geq b \Rightarrow a+c \geq b+c\)? Almost
 - Except for infinities & NaNs
Mathematical Properties of FP Mult

- **Compare to Commutative Ring**
 - Closed under multiplication? **Yes**
 - But may generate infinity or NaN
 - Multiplication Commutative? **Yes**
 - Multiplication is Associative? **No**
 - Possibility of overflow, inexactness of rounding
 - Ex: \((1e20*1e20)*1e-20=\inf, 1e20*(1e20*1e-20)=1e20\)
 - 1 is multiplicative identity? **Yes**
 - Multiplication distributes over addition? **No**
 - Possibility of overflow, inexactness of rounding
 - \(1e20*(1e20-1e20)=0.0, 1e20*1e20 - 1e20*1e20 = \text{NaN}\)

- **Monotonicity**
 - \(a \geq b \& c \geq 0 \Rightarrow a \cdot c \geq b \cdot c? \)
 - Except for infinities & NaNs
 - **Almost**
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Floating Point in C

- C Guarantees Two Levels
 - `float` single precision
 - `double` double precision

- Conversions/Casting
 - Casting between `int`, `float`, and `double` changes bit representation
 - `double/float` → `int`
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to Tmin
 - `int` → `double`
 - Exact conversion, as long as `int` has ≤ 53 bit word size
 - `int` → `float`
 - Will round according to rounding mode
Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```c
int x = ...;
float f = ...;
double d = ...;
```

Assume neither `d` nor `f` is NaN

- `x == (int)(float) x` — \(\times \)
- `x == (int)(double) x` — \(\checkmark \)
- `f == (float)(double) f` — \(\checkmark \)
- `d == (double)(float) d` — \(\times \)
- `f == -(-f);` — \(\checkmark \)
- `2/3 == 2/3.0` — \(\times \)
- `d < 0.0 \Rightarrow ((d*2) < 0.0)` — \(\checkmark \)
- `d > f \Rightarrow -f > -d` — \(\checkmark \)
- `d * d >= 0.0` — \(\checkmark \)
- `(d+f)-d == f` — \(\times \)
Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $M \times 2^E$
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers
Additional Slides
Creating Floating Point Number

■ Steps
 ▪ Normalize to have leading 1
 ▪ Round to fit within fraction
 ▪ Postnormalize to deal with effects of rounding

■ Case Study
 ▪ Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10000000</td>
</tr>
<tr>
<td>15</td>
<td>00001101</td>
</tr>
<tr>
<td>33</td>
<td>00010001</td>
</tr>
<tr>
<td>35</td>
<td>00010011</td>
</tr>
<tr>
<td>138</td>
<td>10001010</td>
</tr>
<tr>
<td>63</td>
<td>00111111</td>
</tr>
</tbody>
</table>
Normalize

- **Requirement**
 - Set binary point so that numbers of form 1.xxxxx
 - Adjust all to have leading one
 - Decrement exponent as shift left

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Fraction</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10000000</td>
<td>1.0000000</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>00001101</td>
<td>1.1010000</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>00010001</td>
<td>1.0001000</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>00010011</td>
<td>1.0011000</td>
<td>4</td>
</tr>
<tr>
<td>138</td>
<td>10001010</td>
<td>1.0001010</td>
<td>7</td>
</tr>
<tr>
<td>63</td>
<td>00111111</td>
<td>1.1111100</td>
<td>5</td>
</tr>
</tbody>
</table>
Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

<table>
<thead>
<tr>
<th>Value</th>
<th>Rounded</th>
<th>Exp</th>
<th>Adjusted</th>
<th>Numeric Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.000</td>
<td>7</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>15</td>
<td>1.101</td>
<td>3</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>1.000</td>
<td>4</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>1.010</td>
<td>4</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>138</td>
<td>1.001</td>
<td>7</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td>63</td>
<td>10.000</td>
<td>5</td>
<td>1.000/6</td>
<td>64</td>
</tr>
<tr>
<td>Description</td>
<td>exp</td>
<td>frac</td>
<td>Numeric Value</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>--------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>$2^{-23,52} \times 2^{-126,1022}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 1.4 \times 10^{-45}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 4.9 \times 10^{-324}$</td>
<td></td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>$(1.0 - \epsilon) \times 2^{-126,1022}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 1.18 \times 10^{-38}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 2.2 \times 10^{-308}$</td>
<td></td>
</tr>
<tr>
<td>Smallest Pos. Normalized</td>
<td>00...01</td>
<td>00...00</td>
<td>$1.0 \times 2^{-126,1022}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Just larger than largest denormalized</td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>$(2.0 - \epsilon) \times 2^{127,1023}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 3.4 \times 10^{38}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 1.8 \times 10^{308}$</td>
<td></td>
</tr>
</tbody>
</table>