Floating Point

15-213/18-213/15-513: Introduction to Computer Systems
4th Lecture, May 22, 2020
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Fractional binary numbers

- What is 1011.101_2?
Fractional Binary Numbers

- Representation
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number:
 \[
 \sum_{k=-j}^{i} b_k \times 2^k
 \]
Fractional Binary Numbers: Examples

- **Value**
 - 5 3/4 = 23/4
 - 2 7/8 = 23/8
 - 1 7/16 = 23/16

- **Representation**
 - 101.11₂ = 4 + 1/2 + 1/4
 - 10.111₂ = 2 + 1/2 + 1/4 + 1/8
 - 1.011₁₁₂ = 1 + 1/4 + 1/8 + 1/16

- **Observations**
 - Divide by 2 by shifting right (unsigned)
 - Multiply by 2 by shifting left
 - Numbers of form 0.111111...₂ are just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0
 - Use notation 1.0 − ε
Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations
 - Value | Representation
 - 1/3 | 0.0101010101[01]...2
 - 1/5 | 0.001100110011[0011]...2
 - 1/10 | 0.0001100110011[0011]...2

- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
IEEE Floating Point

- **IEEE Standard 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
 - Some CPUs don’t implement IEEE 754 in full
 e.g., early GPUs, Cell BE processor

- **Driven by numerical concerns**
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - *Numerical analysts* predominated over *hardware designers* in defining standard
This is important!

- Ariane 5 explodes on maiden voyage: $500 MILLION dollars lost
 - 64-bit floating point number assigned to 16-bit integer
 - Causes rocket to get incorrect value of horizontal velocity and crash

- Patriot Missile defense system misses scud – 28 people die
 - System tracks time in tenths of second
 - Converted from integer to floating point number.
 - Accumulated rounding error causes drift. 20% drift over 8 hours.
 - Eventually (on 2/25/1991 system was on for 100 hours) causes range mis-estimation sufficiently large to miss incoming missiles.
Floating Point Representation

Numerical Form:

\[(-1)^s \times M \times 2^E \]

- **Sign bit** \(s \) determines whether number is negative or positive
- **Significand** \(M \) normally a fractional value in range \([1.0,2.0).\)
- **Exponent** \(E \) weights value by power of two

Example:

\[15213_{10} = (-1)^0 \times 1.110110111011012 \times 2^{13} \]
Precision options

- Single precision: 32 bits
 \(\approx 7 \text{ decimal digits, } 10^{\pm38} \)

- Double precision: 64 bits
 \(\approx 16 \text{ decimal digits, } 10^{\pm308} \)

- Other formats: half precision, quad precision
Three “kinds” of floating point numbers

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>e-bits</td>
<td>f-bits</td>
</tr>
</tbody>
</table>

- 00...00: denormalized
- exp ≠ 0 and exp ≠ 11...11: normalized
- 11...11: special
“Normalized” Values

- When: $\text{exp} \neq 000\ldots0$ and $\text{exp} \neq 111\ldots1$

- Exponent coded as a \textit{biased} value: $E = \text{exp} - \text{Bias}$
 - exp: unsigned value of exp field
 - $\text{Bias} = 2^{k-1} - 1$, where k is number of exponent bits
 - Single precision: 127 ($\text{exp}: 1\ldots254$, $E: -126\ldots127$)
 - Double precision: 1023 ($\text{exp}: 1\ldots2046$, $E: -1022\ldots1023$)

- Significand coded with implied leading 1: $M = 1.\text{xxx}\ldots\text{x}_2$
 - xxx\ldotsx: bits of frac field
 - Minimum when $\text{frac}=000\ldots0$ ($M = 1.0$)
 - Maximum when $\text{frac}=111\ldots1$ ($M = 2.0 - \epsilon$)
 - Get extra leading bit for “free”

$v = (-1)^s \ M \ 2^E$
Normalized Encoding Example

- **Value:** \(\text{float } F = 15213.0; \)
 - \(15213_{10} = 11101101101101_2 \)
 - \(= 1.1101101101101_2 \times 2^{13} \)

- **Significand**
 - \(M = \underline{1.1101101101101} \)
 - \(\text{frac} = \underline{1101101101101000000000000_2} \)

- **Exponent**
 - \(E = 13 \)
 - \(\text{Bias} = 127 \)
 - \(\text{exp} = 140 = 10001100_2 \)

- **Result:**
 - \(\text{sign} \quad \text{exp} \quad \text{frac} \)
 - \(0 \quad 10001100 \quad 11011011011010000000000000 \)

\[v = (-1)^s \cdot M \cdot 2^E \]
\[E = \text{exp} - \text{Bias} \]
Denormalized Values

- **Condition**: $\exp = 000...0$

- **Exponent value**: $E = 1 - \text{Bias}$ (instead of $\exp - \text{Bias}$) (why?)

- **Significand coded with implied leading 0**: $M = 0.xxx...x$
 - $xxx...x$: bits of frac

- **Cases**
 - $\exp = 000...0$, $\text{frac} = 000...0$
 - Represents zero value
 - Note distinct values: +0 and −0 (why?)
 - $\exp = 000...0$, $\text{frac} \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced

\[v = (-1)^s M 2^E \]
\[E = 1 - \text{Bias} \]
Special Values

- **Condition:** $\exp = 111\ldots 1$

- **Case:** $\exp = 111\ldots 1$, $\frac{c}{c} = 000\ldots 0$
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

- **Case:** $\exp = 111\ldots 1$, $\frac{c}{c} \neq 000\ldots 0$
 - **Not-a-Number (NaN)**
 - Represents case when no numeric value can be determined
 - E.g., $\sqrt{-1}$, $\infty - \infty$, $\infty \times 0$
C float Decoding Example

float: 0xC0A00000

**binary: ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ **

1 8-bits 23-bits

- **E =**
- **S =**
- **M =**

v = \((-1)^s M 2^E = \)

Bias = 2^{k-1} - 1 = 127

v = \((-1)^s M 2^E = \)
C float Decoding Example #1

float: 0xC0A00000

binary: \[1100\ 0000\ 1010\ 0000\ 0000\ 0000\ 0000\ 0000\]

\[E = 1010\ 0000\ 0000\ 0000\ 0000\ 0000\]

\[S = 1\]

\[M = 1.010\ 0000\ 0000\ 0000\ 0000\ 0000\]

\[v = (-1)^s \ M \ 2^E = \]

\[= 1.25\]

\[v = \exp(-\text{Bias})\]
C float Decoding Example #1

float: 0xC0A00000

decimal: 1.25

binary: 1100 0000 1010 0000 0000 0000 0000 0000

1 1000 0001 010 0000 0000 0000 0000 0000

1 8-bits 23-bits

\[E = \exp - \text{Bias} = 129 - 127 = 2 \text{ (decimal)} \]

\[S = 1 \rightarrow \text{negative number} \]

\[M = 1.010 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \]

\[= 1 + \frac{1}{4} = 1.25 \]

\[v = (-1)^S \ M \ 2^E = (-1)^1 \times 1.25 \times 2^2 = -5 \]
C float Decoding Example #2

float: 0x001C0000

binary: 0000 0000 0001 1100 0000 0000 0000 0000

\(E = 1 \) – Bias

\(S = 1 \) negative number

\(M = 0.01000000000000000000000000000000 \)

\(v = (-1)^S M 2^E = \)

\(v = 1.25 \)

float: 0x001C0000

binary: 0000 0000 001 1100 0000 0000 0000 0000 0000 0000

Hex Decimal Binary

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
C float Decoding Example #2

float: 0x001C0000

binary:

0000 0000 0001 1100 0000 0000 0000 0000

\[
\begin{array}{cc}
1 & 8\text{-bits} \\
0 & 23\text{-bits}
\end{array}
\]

\[E = 1 - \text{Bias} = 1 - 127 = -126 \text{ (decimal)}\]

\[S = 0 \rightarrow \text{positive number}\]

\[M = 0.0011100000000000000000 = 1/8 + 1/16 + 1/32 = 7/32 = 7 \times 2^{-5}\]

\[v = (-1)^s M 2^E = (-1)^0 \times 7 \times 2^{-5} \times 2^{-126} = 7 \times 2^{-131}\]

\[\approx 2.571393892 \times 10^{-39}\]
Visualization: Floating Point Encodings

-∞ −Normalized −Denorm +Denorm +Normalized +∞

NaN −0 +0

NaN
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Tiny Floating Point Example

- **8-bit Floating Point Representation**
 - the sign bit is in the most significant bit
 - the next four bits are the `exp`, with a bias of 7
 - the last three bits are the `frac`

- **Same general form as IEEE Format**
 - normalized, denormalized
 - representation of 0, NaN, infinity
Dynamic Range (s=0 only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0000 001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
<td>closest to zero</td>
</tr>
<tr>
<td>0</td>
<td>0000 010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
<td>(-1)^0 (0+1/4) * 2^-6</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000 110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
<td>largest denorm</td>
</tr>
<tr>
<td>0</td>
<td>0000 111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0001 000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
<td>smallest norm</td>
</tr>
<tr>
<td>0</td>
<td>0001 001</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
<td>(-1)^0 (1+1/8) * 2^-6</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0110 110</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
<td>closest to 1 below</td>
</tr>
<tr>
<td>0</td>
<td>0110 111</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0111 000</td>
<td>0</td>
<td>8/8*1 = 1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0111 001</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
<td>closest to 1 above</td>
</tr>
<tr>
<td>0</td>
<td>0111 010</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1110 110</td>
<td>7</td>
<td>14/8*128 = 224</td>
<td>largest norm</td>
</tr>
<tr>
<td>0</td>
<td>1110 111</td>
<td>7</td>
<td>15/8*128 = 240</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1111 000</td>
<td>n/a</td>
<td>inf</td>
<td></td>
</tr>
</tbody>
</table>

\[v = (-1)^s \, M \, 2^E \]

norm: \(E = \exp - \text{Bias} \)

denorm: \(E = 1 - \text{Bias} \)
Distribution of Values

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is $2^{3-1} - 1 = 3$

- **Notice how the distribution gets denser toward zero.**

![Diagram showing the distribution of values with 6-bit exponent and 2-bit fraction bits, with 8 values distributed across the range from -15 to 15.](image)
Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

![Diagram showing distribution of values with denormalized, normalized, and infinity markers.]
Special Properties of the IEEE Encoding

- **FP Zero Same as Integer Zero**
 - All bits = 0

- **Can (Almost) Use Unsigned Integer Comparison**
 - Must first compare sign bits
 - Must consider −0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield? The answer is complicated.
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity
Quiz Time!

Check out:

https://canvas.cmu.edu/courses/16836
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Floating Point Operations: Basic Idea

- $x +_f y = \text{Round}(x + y)$
- $x \times_f y = \text{Round}(x \times y)$

Basic idea
- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac
Rounding

- **Rounding Modes (illustrate with $ rounding)**

<table>
<thead>
<tr>
<th></th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>−$1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards zero</td>
<td>$1 ↓</td>
<td>$1 ↓</td>
<td>$1 ↓</td>
<td>$2 ↓</td>
<td>−$1 ↑</td>
</tr>
<tr>
<td>Round down (−∞)</td>
<td>$1 ↓</td>
<td>$1 ↓</td>
<td>$1 ↓</td>
<td>$2 ↓</td>
<td>−$2 ↓</td>
</tr>
<tr>
<td>Round up (+∞)</td>
<td>$2 ↑</td>
<td>$2 ↑</td>
<td>$2 ↑</td>
<td>$3 ↑</td>
<td>−$1 ↑</td>
</tr>
<tr>
<td>Nearest Even* (default)</td>
<td>$1 ↓</td>
<td>$2 ↑</td>
<td>$2 ↑</td>
<td>$2 ↓</td>
<td>−$2 ↓</td>
</tr>
</tbody>
</table>

Round to nearest, but if half-way in-between then round to nearest even
Closer Look at Round-To-Even

■ Default Rounding Mode
 ▪ Hard to get any other kind without dropping into assembly
 ▪ C99 has support for rounding mode management
 ▪ All others are statistically biased
 ▪ Sum of set of positive numbers will consistently be over- or under-estimated

■ Applying to Other Decimal Places / Bit Positions
 ▪ When exactly halfway between two possible values
 ▪ Round so that least significant digit is even
 ▪ E.g., round to nearest hundredth
 7.8949999 7.89 (Less than half way)
 7.8950001 7.90 (Greater than half way)
 7.8950000 7.90 (Half way—round up)
 7.8850000 7.88 (Half way—round down)
Rounding Binary Numbers

- **Binary Fractional Numbers**
 - “Even” when least significant bit is 0
 - “Half way” when bits to right of rounding position = 100...2

- **Examples**
 - Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011₂</td>
<td>10.00₂</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110₂</td>
<td>10.01₂</td>
<td>(>1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100₂</td>
<td>11.00₂</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10100₂</td>
<td>10.10₂</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
Rounding

Guard bit: LSB of result

Round bit: 1st bit removed

Round up conditions

- Round = 1, Sticky = 1 → > 0.5
- Guard = 1, Round = 1, Sticky = 0 → Round to even

<table>
<thead>
<tr>
<th>Fraction</th>
<th>GRS</th>
<th>Increment</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000000</td>
<td>000</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>1.1010000</td>
<td>100</td>
<td>N</td>
<td>1.101</td>
</tr>
<tr>
<td>1.0001000</td>
<td>010</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>1.0011000</td>
<td>110</td>
<td>Y</td>
<td>1.010</td>
</tr>
<tr>
<td>1.0001010</td>
<td>011</td>
<td>Y</td>
<td>1.001</td>
</tr>
<tr>
<td>1.1111100</td>
<td>111</td>
<td>Y</td>
<td>10.000</td>
</tr>
</tbody>
</table>
FP Multiplication

\[(-1)^{s_1} M_1 \ 2^{E_1} \times (-1)^{s_2} M_2 \ 2^{E_2} \]

Exact Result: \((-1)^s \ M \ 2^E\)
- Sign s: \(s_1 \land s_2\)
- Significand M: \(M_1 \times M_2\)
- Exponent E: \(E_1 + E_2\)

Fixing
- If \(M \geq 2\), shift \(M\) right, increment E
- If E out of range, overflow
- Round \(M\) to fit \(\text{frac}\) precision

Implementation
- Biggest chore is multiplying significands

4 bit significand: \(1.010_2 \times 1.110_2 = 10.0011_2\)
\[
= 1.00011_2 \times 2^6 = 1.0011_2 \times 2^6
\]
Floating Point Addition

- \((-1)^{s_1} M_1 \ 2^{E_1} + (-1)^{s_2} M_2 \ 2^{E_2}\)
 - Assume \(E_1 > E_2\)

- **Exact Result:** \((-1)^s \ M \ 2^E\)
 - Sign \(s\), significand \(M\):
 - Result of signed align & add
 - Exponent \(E\): \(E_1\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(M < 1\), shift \(M\) left \(k\) positions, decrement \(E\) by \(k\)
 - Overflow if \(E\) out of range
 - Round \(M\) to fit \(\text{frac}\) precision

\[
1.010\times2^2 + 1.110\times2^3 = (0.1010 + 1.1100)\times2^3 = 10.0110 \times 2^3 = 1.00110 \times 2^4 = 1.010 \times 2^4
\]
Mathematical Properties of FP Add

Compare to those of Abelian Group

- Closed under addition? **Yes**
 - But may generate infinity or NaN
- Commutative? **Yes**
- Associative? **No**
 - Overflow and inexactness of rounding
 - \((3.14+1e10)-1e10 = 0,\ 3.14+(1e10-1e10) = 3.14\)
- 0 is additive identity? **Yes**
- Every element has additive inverse? **Almost**
 - Yes, except for infinities & NaNs

Monotonicity

- \(a \geq b \Rightarrow a+c \geq b+c?\) **Almost**
 - Except for infinities & NaNs
Mathematical Properties of FP Mult

- **Compare to Commutative Ring**
 - Closed under multiplication? **Yes**
 - But may generate infinity or NaN
 - Multiplication Commutative? **Yes**
 - Multiplication is Associative? **No**
 - Possibility of overflow, inexactness of rounding
 - Ex: $(1e20*1e20)*1e-20=\text{inf}, 1e20*(1e20*1e-20)=1e20$
 - 1 is multiplicative identity? **Yes**
 - Multiplication distributes over addition? **No**
 - Possibility of overflow, inexactness of rounding
 - $1e20*(1e20-1e20)=0.0, 1e20*1e20-1e20*1e20=\text{NaN}$

- **Monotonicity**
 - $a \geq b \& c \geq 0 \Rightarrow a*c \geq b*c$? **Almost**
 - Except for infinities & NaNs
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Floating Point in C

- C Guarantees Two Levels
 - float single precision
 - double double precision

- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to Tmin
 - int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode
Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```c
int x = ...;
float f = ...;
double d = ...;
```

Assume neither `d` nor `f` is NaN

- `x == (int)(float) x` | ✗
- `x == (int)(double) x` | ✓
- `f == (float)(double) f` | ✓
- `d == (double)(float) d` | ✗
- `f == -(-f)` | ✓
- `2/3 == 2/3.0` | ✗
- `d < 0.0 ⇒ ((d*2) < 0.0)` | ✓
- `d > f ⇒ -f > -d` | ✓
- `d * d >= 0.0` | ✓
- `(d+f)−d == f` | ✗
Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $M \times 2^E$
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers
Additional Slides
Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

Case Study

- Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

<table>
<thead>
<tr>
<th>Integer</th>
<th>Binary 8-bit Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10000000</td>
</tr>
<tr>
<td>15</td>
<td>00001101</td>
</tr>
<tr>
<td>33</td>
<td>00010001</td>
</tr>
<tr>
<td>35</td>
<td>00010011</td>
</tr>
<tr>
<td>138</td>
<td>10001010</td>
</tr>
<tr>
<td>63</td>
<td>00111111</td>
</tr>
</tbody>
</table>
Normalize

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Fraction</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10000000</td>
<td>1.0000000</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>00001101</td>
<td>1.1010000</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>00010001</td>
<td>1.0001000</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>00010011</td>
<td>1.0011000</td>
<td>4</td>
</tr>
<tr>
<td>138</td>
<td>10001010</td>
<td>1.0001010</td>
<td>7</td>
</tr>
<tr>
<td>63</td>
<td>00111111</td>
<td>1.1111100</td>
<td>5</td>
</tr>
</tbody>
</table>
Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

<table>
<thead>
<tr>
<th>Value</th>
<th>Rounded</th>
<th>Exp</th>
<th>Adjusted</th>
<th>Numeric Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.000</td>
<td>7</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.101</td>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.000</td>
<td>4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.010</td>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>1.001</td>
<td>7</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>10.000</td>
<td>5</td>
<td>1.000/6</td>
<td>64</td>
</tr>
</tbody>
</table>
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>$2^{-{23,52}} \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 1.4 \times 10^{-45}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 4.9 \times 10^{-324}$</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>$(1.0 - \varepsilon) \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 1.18 \times 10^{-38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 2.2 \times 10^{-308}$</td>
</tr>
<tr>
<td>Smallest Pos. Normalized</td>
<td>00...01</td>
<td>00...00</td>
<td>$1.0 \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Just larger than largest denormalized</td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>$(2.0 - \varepsilon) \times 2^{{127,1023}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 3.4 \times 10^{38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 1.8 \times 10^{308}$</td>
</tr>
</tbody>
</table>