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Today: Machine Programming |I: Basics

Assembly Basics: Registers, operands, move
Arithmetic & logical operations

O
O
m Condition codes and jumps
L

C, assembly, machine code
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Introduction to Assembly

m Assembly is a programming language
= |t has types
= |t has control flow shape
= |tis also an intermediate, very limited verbs, need to be explicit

m Assembly is defined by the ISA

(instruction set architecture)
= x86, ARM, RISC-V, etc
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Beginning Grammar

m Say something in assembly:

Operation (op) Register names
add %rbx, %rax
is

rax += rbx
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Nouns

m Registers

= Special parts of the CPU to hold small amounts of data, like local
variables

= Names are very specific:
%r?x (a,b,c,d)

%r?i(d,s)
%r?p (b,i,s) // Special meanings

%r? (8-15)

m Memory
= Everything else
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x86-64 Integer Registers (reference)

$rax Seax %r8 $r8d

srbx %ebx $r9 $r9d

$rcx Secx ¢rl10 $rl10d
srdx %edx $rll srlld
srsi %esi $rl2 srl2d
$rdi $edi $rl3 $rl3d
3rsp %esp srlé $rldd
srbp %ebp 3rl5 $rl5d

= Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
= Not part of memory (or cache)
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Verbs (i.e., operations)

m Transfer data between memory and register
" Load data from memory into register
= Store register data into memory

m Perform arithmetic function on register or memory data

m Transfer control

® Unconditional jumps to/from procedures
= Conditional branches
" |ndirect branches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7



Carnegie Mellon

Verbs have optional suffix

m Operation suffix specifies the size(s) involved
= There are also different register names for the different sizes

Suffix Register Name Size (bytes)
q r.. 3
I e.. (usually) 4
w see reference 2
b see reference 1
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Moving Data

m X=5
mov S5, %rax

mX=Yy

mov %rcx, %rdx

m X=*p

mov (%rsi), %r8
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Memory

m Parentheses always denote a memory address computation
(%rdi) -> *ptr

m Most operations will then access memory
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movqg Operand Combinations (reference)

Source Dest Src,Dest C Analog
( Reg movqg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, (%rax) *p = -147;

movqg %rax,%rdx temp2 = templ;
movq < Reg {Reg q p P

Mem movq Srax, (5rdx) *p = temp;

N Mem Reg movqg (%rax) , srdx temp = *p;

Cannot do memory-memory transfer with a single instruction
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Reading Assembly Example

void

whatAmI (<type> a, <type> b)

{

???7?
whatAmI:

} 9 e o
movq $rdi) , %Srax
movq (%rsi), %rdx
movq $rdx, (%rdi)
movqg $rax, (%rsi)
ret

] $rsi
srdi
What is <type>?

Find %rdi in the assembly
How is it used?
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Reading Assembly Example

void swap
(long *xp, long *yp)
{ swap:
long t0 = *xp; movq $rdi) , %Srax
long t1 = *yp; movq $rsi) , %Srdx
*xp = tl; movqg $rdx, (%rdi)
*yp = tO0; movqg $rax, (%rsi)
} ret

We have now written the “pseudo-C” for the assembly,
using the types and replacing each register with a
“variable name”.
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Understanding Swap()

Memory
void swap Registers
(long *xp, long *yp)
{ $rdi o
long t0 = *xp; srsi
long tl1 = *yp; °
*xp = tl; $rax
*yp = t0;
} Srdx
Register Value
srdi Xp
Frsi YP swap:
$rax t0 movq $rdi), %rax # t0 = *xp
srdx tl movq $rsi), %$rdx # tl = *yp
movq $rdx, (%rdi) # *xp tl
movqg $rax, (%rsi) # *yp = tO

ret
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Understanding Swap()

. Memory
Reg Isters Address
: 123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
srax 0x108
$rdx 456 [ 0x100
swap:
movq ($rdi), %rax # t0 = *xp
movq ($rsi), %rdx # tl1l = *yp
movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret
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Understanding Swap()

. Memory
Reg Isters Address
: 123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
$rax 123 0x108
rdx 456 | 0x100
swap:
movq $rdi), %Srax # t0 = *xp
movq ($rsi), %rdx # tl1l = *yp
movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret
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Understanding Swap()

] Memory
Registers Address
: 123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
rdx 456 |€ 456 | 0x100
swap:
movq ($rdi), %rax # t0 = *xp
movq $rsi), %$rdx # tl1 = *yp
movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret
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Understanding Swap()

. Memory
Reg Isters Address
456 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
$rax 123 0x108
rdx 456 456 | 0x100
swap:
movq ($rdi), %rax # t0 = *xp
movq ($rsi), %rdx # tl1l = *yp
movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret
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Understanding Swap()

. Memory
Reg Isters Address
456 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
%rax 123 \ OX1O8
rdx 456 123 | 0x100
swap:
movq ($rdi), %rax # t0 = *xp
movq ($rsi), %rdx # tl1l = *yp
movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret
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More memory grammar

m Most General Form of Addressing Mode
D(Rb,Ri,S) Mem|[Reg[Rb]+S*Reg[Ri]+ D]

= D: Constant “displacement” 1, 2, or 4 bytes

Rb: Base register: Any of 16 integer registers
= Ri: Indexregister: Any, except for $rsp

= S: Scale: 1,2,4,0r 8

m If a value is “missing”, it is the identity element

" +0or *1
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Address Computation Examples

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]

o
srdx 0x£f000 = D:  Constant “displacement” 1, 2, or 4 bytes

= Rb: Base register: Any of 16 integer registers
srex | 0x0100 _ shen A per e

= Ri: Indexregister: Any, except for $rsp

= S: Scale: 1, 2, 4, or 8 (why these numbers?)
Expression Address Computation Address

0x8 (%rdx)

srdx, srcx)

$rdx, %rcx,4)

0x80 (,%rdx,2)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21



Carnegie Mellon

More Verbs

m Two operands (think datalab)

Format Computation
addqg Src,Dest Dest = Dest + Src
salqg Src,Dest Dest = Dest << Src Also called shlq
sarq Src,Dest Dest = Dest >> Src Arithmetic
shrqg Src,Dest Dest = Dest >> Src Logical

m One operand (also datalab)

incqg Dest Dest = Dest + 1
decq Dest Dest = Dest — 1
negq Dest Dest = — Dest

notqg Dest Dest = ~“Dest
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Address Computation Instruction

m leaqSrc, Dst

= Srcis address mode expression
= Set Dst to address denoted by expression

m Uses
® Computing addresses without a memory reference
= E.g., translationof p = &x[i];
= Computing arithmetic expressions of the form x + k*y
= k=1,2,4,0r8

m Example
long ml2 (lon .
{ g mlz(long x) Converted to ASM by compiler:
return x*12; leaq (%rdi,%rdi,2), %rax # t = x+2*x

} salg $2, %rax # return t<<2
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Registers have conventions

m Architectural requirements:
= %rip — program counter / instruction pointer
= Only points to the next instruction to execute

= %rsp — stack pointer
= %rbp —sometimes also stack related

m Conventions:
= %rax —return value
= %rdi—first argument
= %rsi —second argument
= %rdx — third argument
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Putting it Together

arith:
m Arguments? leaq $rdi,%rsi), %rax
= How many? addqg Frdx, %rax
leaq $rsi,%rsi,2), %rdx
u Whattype(S)? Salq $4, %rdx
leaq 4 (%rdi,%rdx), %rcx
imul % , %
m Return value? g R e

Interesting Instructions
m Local variables? = leagq: address computation
" salgq:shift
= imulq: multiplication

= But, only used once
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Arithmetic Expression Example

arith:
leaq (%rdi,%$rsi), %Srax

long arith addq ¥rdx, S%rax
(long x, long y, long z) leaq $rsi,%rsi,2), %rdx
{ salq $4, %$rdx

long tl1 = x+y; leaq 4 (%$rdi,%$rdx), %rcx

long t2 = z+tl; imulq ¥rcx, srax

long t3 = x+4; ret

long t4 =y * 48; ] ]

long t5 = t3 + t4; Interesting Instructions

long rval = t2 * t5; " leagq: address computation

return rval; = salg: shift
} = imulgqg: multiplication

= But, only used once
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Understanding Arithmetic Expression

Example

arith:
leaq (%$rdi,%rsi), %Srax # tl
long arith addqg $rdx, %rax # t2
(long x, long y, long z) leaq (%rsi,%rsi,2), %rdx
{ salqg $4, %$rdx # t4
long tl1 = x+y; leaq 4(%rdi,%rdx), %rcx # t5
long t2 = z+tl; imulq $rcx, %Srax # rval
long t3 = x+4; ret

long t4 =y * 48;

long 5 = t3 + t4; Register | Usels)
t2 * t5;

long rval =

return rval; srdi Argument x
} Frsi Argument y
Srdx Argument z,
t4
$rax tl, t2, rval

$rcx t5
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Quiz Time!

Check out:

https://canvas.cmu.edu/courses/49105/quizzes/150043

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28


https://canvas.cmu.edu/courses/49105/quizzes/150043
https://canvas.cmu.edu/courses/49105/quizzes/150043

Expressing Inequality
m We want to express numeric relations in assembly

= Equals, not equals
= Greater, less than
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Control Flow

m We also need assembly to make decisions based on these
(in)equalities
= We call the sequence of instructions executed, the control flow
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Control flow

extern void opl (void) ;

extern void op2(void) ;

void decision(int x) {

if (x) |
opl() ;
} else {
op2() ;
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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return
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Control flow in assembly language

extern void opl (void) ; decision:
testl $edi, %edi

je .L2

extern void op2(void) ;

call opl
void decision(int x) {

Jjmp .L1
if (x) { L2:
opl () ; call op2
} else { .L1:
op2() ; rer
}

It's all done with
GOTO!

=

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Conditional “Goto”

m How did the example work?

m The first jump instruction is conditional
" |t uses processor state set by the test instruction
® Processor has special registers to hold specific state

m We call this specific state, “condition codes”
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Expressing Inequality
m Xx86 has two instructions to set the specific state

= cmp
" test

m Instructions other than lea also implicitly set the state on
x86
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Compare Instruction

mEcmp a, b
= Computes b — a (just like sub)

= Sets condition codes based on result, but...
= Does not change b

" Usedforif (a < b) { ..}
whenever b — a isn’t needed for anything else
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Test Instruction

m test a, b

= Computes b&a (just like and)
= Sets condition codes (only SF and ZF) based on result, but...
= Does not change b

" Mostcommon use: test %rX, %rX
to compare $SrX to zero

= Second most common use: test %rX, %rY
tests if any of the 1-bitsin $rY are also 1 in $rX (or vice versa)
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Jumping
B jX Instructions
= Jump to different part of code depending on condition codes

= jmp — unconditional

4
= ZERO

= GE
= Greater than or equal
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Jumping (reference)

B jX Instructions

= Jump to different part of code depending on condition codes

), Condition Description

jmp 1 Unconditional

je ZF Equal / Zero

jne ~ZF Not Equal / Not Zero
js SF Negative

jns ~SF Nonnegative

jg ~ (SF~OF) &~ZF Greater (Signed)

jge ~ (SFAOF) Greater or Equal (Signed)
jl (SFAOF) Less (Signed)

jle (SFAOF) | ZF Less or Equal (Signed)
ja ~CF&~ZF Above (unsigned)

jb CF Below (unsigned)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Returning Condition Codes

m setX will

= Set low-order byte of destination to 0 or 1 based on combinations of
condition codes

= Does not alter remaining 7 bytes

int gt (long x, long y)

return x >

cmpq srsi, Srdi # Compare x:y

setg %al # Set when >
movzbl %al, %eax # Zero rest of %rax

ret
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movXYZ — Moving to larger bit widths

m mov with three suffixes will move to larger bit widths
= X—{s,z}
= Sign extend
= Zero extend
= Y —source bit width
= Z—destination bit width

m movzbl %al, %eax
" z - zero
" b - source is 1 byte

" 1 - destination is 4 bytes
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Summary

m Nouns
= Registers

m Verbs

® |nstructions or operations

m Suffixes and Annotations
= Specify the size (usually optional)
= Memory addressing mode

m Relations

= Relies on condition codes and conditional jump (i.e., goto)
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Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
for writing assembly/machine code.

= Examples: instruction set specification, registers
m Microarchitecture: Implementation of the architecture
= Examples: cache sizes and core frequency
m Code Forms:
= Machine Code: The byte-level programs that a processor executes
= Assembly Code: A text representation of machine code
m Example ISAs:
" Intel: x86, IA32, Itanium, x86-64

= ARM: Used in almost all mobile phones
= RISCV: New open-source ISA
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Assembly/Machine Code View

CPU Memory
Addresses
Registers >
& Data Code
PC < > Data
Condition Instructions Stack
Codes <

Programmer-Visible State

= PC: Program counter

» Address of next instruction
= Called “RIP” (x86-64)

= Register file
= Heavily used program data

" Memory
= Byte addressable array
= Code and user data
= Stack to support procedures

= Condition codes

= Store status information about most
recent arithmetic or logical operation

= Used for conditional branching
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Where does it come from?

m Assembly is usually generated by the compiler
= We can ask the compiler to show us the assembly
= We can also generate assembly from machine code

m The compiler runs a separate tool that generates machine
code
" Machine code is just bytes in memory

m Execution gives bytes their “types”
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Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gecc -Og pl.c p2.c -o p
= Use debugging-friendly optimizations (-Og)
= Put resulting binary in file p

text C program (pl.c p2.c)

Compiler (gcc -Og -S)

A

text Asm program (pl.s p2.s)

Assembler (gcc —c or as)

binary Object program (pl.o p2.0) Static libraries
(.a)

Linker (gcc or 1d)

A 4

binary Executable program (p)
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Compiling Into Assembly

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y) sumstore:
pushqg srbx
void sumstore (long x, long y, movq $rdx, S%rbx
long *dest) call plus
{ movq $rax, (%rbx)
long t = plus(x, y): popq srbx
*dest = t; ret
}

Obtain (on shark machine) with command
gcc -0g -S sum.c
Produces file sum. s

Warning: Will get very different results on non-Shark
machines (Andrew Linux, Mac 0S-X, ...) due to different
versions of gcc and different compiler settings.
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What it really looks like

.globl sumstore
.type sumstore, @function
sumstore:
.LFB35:
.cfi_ startproc
pushg %rbx
.cfi def cfa offset 16
.cfi offset 3, -16
movq $rdx, S%rbx
call plus
movq $rax, (%rbx)
popda Srbx
.cfi def cfa offset 8
ret
.cfi_endproc
.LFE35:

.size sumstore, .-sumstore
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What it really looks like

Things that look weird
and are preceded by a “’
sumstore: are generally directives.

pushg %rbx

sumstore:
pushqg $rbx
o o
movq srdx, %rbx movq srdx, S%$rbx
call plus
call plus : .
movq ¥rax, (%rbx)
movq $rax, (%rbx) .
o pPopq $rbx
PopPq $rbx ret

ret
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Object Code

Code for sumstore
m Assembler

0x0400595:; .
|
0x53 Translates . s into .o
0x48 = Binary encoding of each instruction
0x839 = Nearly-complete image of executable code
0xd3 .. ) ) _
Oxe8 = Missing linkages between code in different
Oxf2 files
Oxff m Linker
Oxff _ | . ) o
Oxff Resolves references between files

e Total of 14 bytes

0x48 = Combines with static run-time libraries

0x89 e Each instruction
0x03 1, 3, or 5 bytes

Ox5b e Starts at address
Oxc3 0x0400595 = Linking occurs when program begins

execution

= E.g.,, code formalloc, printf

= Some libraries are dynamically linked
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Machine Instruction Example
m C Code

= Store value t where designated by
dest

*dest = t;

m Assembly

" Move 8-byte value to memory

movqg %rax, (%rbx)

= Quad words in x86-64 parlance
" Operands:

t: Register $rax

dest: Register $rbx

*dest: MemoryM[%$rbx]

m Object Code

= 3-byte instruction
® Stored at address 0x40059e

0x40059%9e: 48 89 03
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Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595: 53 push $rbx
400596: 48 89 d3 mov %$rdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
40059%9e: 48 89 03 mov $rax, (%rbx)
4005al: b5b pop $rbx
4005a2: c3 retq

m Disassembler
objdump -d sum
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
® Can berun on either a.out (complete executable) or . o file
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Alternate Disassembly
Disassembled

Dump of assembler code for function sumstore:
0x0000000000400595 <+0>: push $rbx
0x0000000000400596 <+1>: mov $rdx, srbx
0x0000000000400599 <+4>: callg 0x400590 <plus>
0x000000000040059%e <+9>: mov $rax, (3rbx)
0x00000000004005a1 <+12>:pop %rbx
0x00000000004005a2 <+13>:retq

m Within gdb Debugger

= Disassemble procedure
gdb sum
disassemble sumstore
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Alternate Disassembly
Disassembled

Object
Code
Dump of assembler code for function sumstore:
0x0400595: 0x0000000000400595 <+0>: push  %rbx
0x53 0x0000000000400596 <+1>: mov srdx, $rbx
0x48 0x0000000000400599 <+4>: callg 0x400590 <plus>
0x89 0x000000000040059e <+9>: mov $rax, ($rbx)
0xd3 0x00000000004005al <+12>:pop $rbx
Oxe8 0x00000000004005a2 <+13>:retq
Oxf2
Oxff
g:ii m Within gdb Debugger
0x48 = Disassemble procedure
0x89 gdb sum
gXO3 disassemble sumstore
x5b
Oxc3 = Examine the 14 bytes starting at sumstore

x/14xb sumstore
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What Can be Disassembled?

$ objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000:

30001001: : . _

30001003 .Reverse englneerlroig forbidden by
30001005: Microsoft End User License Agreement
3000100a:

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source
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Appendix
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Levels of Abstraction

#include <stdio.h>
int main () {
int i, n = 10, t1 = 0, t2 = 1, nxt;
for (i = 1; 1 <= n; ++i){
printf("s%d, ", tl1);
nxt = tl + t2;
tl t2;
t2 = nxt; }
return 0; }

C programmer

Assembly programmer

CPU Memo
Addresses Y
Registers >
€ Data Code
PC < > Data
Condition Instructions Stack
Codes +

Computer Designer

Gates, clocks, circuit layout, ...
—D Q_

i o |D

— 6_
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Xx86-64 Integer Registers

$rax Seax %r8 $r8d

srbx %ebx $r9 $r9d

$rcx Secx ¢rl10 $rl10d
srdx %edx $rll srlld
srsi %esi $rl2 srl2d
$rdi $edi $rl3 $rl3d
3rsp %esp srlé $rldd
srbp %ebp 3rl5 $rl5d

= Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
= Not part of memory (or cache)
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Some History: IA32 Registers Origin

(mostly obsolete)

~—_
$eax $ax $ah gal accumulate
$ecx $cx $ch Scl counter
a
e
= Tedx $dx %dh sdl data
2 <
©
o sebx $bx $bh bl base
3
a0 o - o 0 source
oSl oSl indesx
o . o A4 destination
L Oedl sdi index
o o stack
€SP ol pointer
base
o)
) %b _
oebp P pointer
\ )
Y

16-bit virtual registers
(backwards compatibility)
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Today: Machine Programming |I: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

L]

C, assembly, machine code
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Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gecc -Og pl.c p2.c -o p
= Use debugging-friendly optimizations (-Og)
= Put resulting binary in file p

text C program (pl.c p2.c)

Compiler (gcc -Og -S)

A

text Asm program (pl.s p2.s)

Assembler (gcc —c or as)

binary Object program (pl.o p2.0) Static libraries
(.a)

Linker (gcc or 1d)

A 4

binary Executable program (p)
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Compiling Into Assembly

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y) sumstore:
pushqg srbx
void sumstore (long x, long y, movq $rdx, S%rbx
long *dest) call plus
{ movq $rax, (%rbx)
long t = plus(x, y): popq srbx
*dest = t; ret
}

Obtain (on shark machine) with command
gcc -0g -S sum.c
Produces file sum. s

Warning: Will get very different results on non-Shark
machines (Andrew Linux, Mac 0S-X, ...) due to different
versions of gcc and different compiler settings.
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What it really looks like

.globl sumstore
.type sumstore, @function
sumstore:
.LFB35:
.cfi_ startproc
pushg %rbx
.cfi def cfa offset 16
.cfi offset 3, -16
movq $rdx, S%rbx
call plus
movq $rax, (%rbx)
popda Srbx
.cfi def cfa offset 8
ret
.cfi_endproc
.LFE35:

.size sumstore, .-sumstore
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What it really looks like

Things that look weird
and are preceded by a “’
sumstore: are generally directives.

pushg %rbx

sumstore:
pushqg $rbx
o o
movq srdx, %rbx movq srdx, S%$rbx
call plus
call plus : .
movq ¥rax, (%rbx)
movq $rax, (%rbx) .
o pPopq $rbx
PopPq $rbx ret

ret
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Object Code

Code for sumstore
m Assembler

0x0400595:; .
|
0x53 Translates . s into .o
0x48 = Binary encoding of each instruction
0x839 = Nearly-complete image of executable code
0xd3 .. ) ) _
Oxe8 = Missing linkages between code in different
Oxf2 files
Oxff m Linker
Oxff _ | . ) o
Oxff Resolves references between files

e Total of 14 bytes

0x48 = Combines with static run-time libraries

0x89 e Each instruction
0x03 1, 3, or 5 bytes

Ox5b e Starts at address
Oxc3 0x0400595 = Linking occurs when program begins

execution

= E.g.,, code formalloc, printf

= Some libraries are dynamically linked
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Machine Instruction Example
m C Code

= Store value t where designated by
dest

*dest = t;

m Assembly

" Move 8-byte value to memory

movqg %rax, (%rbx)

= Quad words in x86-64 parlance
" Operands:

t: Register $rax

dest: Register $rbx

*dest: MemoryM[%$rbx]

m Object Code

= 3-byte instruction
® Stored at address 0x40059e

0x40059%9e: 48 89 03
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Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595: 53 push $rbx
400596: 48 89 d3 mov %$rdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
40059%9e: 48 89 03 mov $rax, (%rbx)
4005al: b5b pop $rbx
4005a2: c3 retq

m Disassembler
objdump -d sum
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
® Can berun on either a.out (complete executable) or . o file
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Alternate Disassembly
Disassembled

Dump of assembler code for function sumstore:
0x0000000000400595 <+0>: push $rbx
0x0000000000400596 <+1>: mov $rdx, srbx
0x0000000000400599 <+4>: callg 0x400590 <plus>
0x000000000040059%e <+9>: mov $rax, (3rbx)
0x00000000004005a1 <+12>:pop %rbx
0x00000000004005a2 <+13>:retq

m Within gdb Debugger

= Disassemble procedure
gdb sum
disassemble sumstore
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Alternate Disassembly
Disassembled

Object
Code
Dump of assembler code for function sumstore:
0x0400595: 0x0000000000400595 <+0>: push  %rbx
0x53 0x0000000000400596 <+1>: mov srdx, $rbx
0x48 0x0000000000400599 <+4>: callg 0x400590 <plus>
0x89 0x000000000040059e <+9>: mov $rax, ($rbx)
0xd3 0x00000000004005al <+12>:pop $rbx
Oxe8 0x00000000004005a2 <+13>:retq
Oxf2
Oxff
g:ii m Within gdb Debugger
0x48 = Disassemble procedure
0x89 gdb sum
gXO3 disassemble sumstore
x5b
Oxc3 = Examine the 14 bytes starting at sumstore

x/14xb sumstore
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What Can be Disassembled?

$ objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000:

30001001: : . _

30001003 .Reverse englneerlroig forbidden by
30001005: Microsoft End User License Agreement
3000100a:

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source
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Machine Programming |: Summary

m History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts
m C, assembly, machine code

= New forms of visible state: program counter, registers, ...

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

" The x86-64 move instructions cover wide range of data movement
forms

m Arithmetic

= Ccompiler will figure out different instruction combinations to
carry out computation
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History: Machine Programming |I: Basics

History of Intel processors and architectures
Assembly Basics: Registers, operands, move

N
N
m Arithmetic & logical operations
L]

C, assembly, machine code
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Intel x86 Processors

m Dominate laptop/desktop/server market

m Evolutionary design
= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on
= Now 3 volumes, about 5,000 pages of documentation

m Complex instruction set computer (CISC)
= Many different instructions with many different formats

= But, only small subset encountered with Linux programs

" Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!

= In terms of speed. Less so for low power.
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Intel x86 Evolution: Milestones

Name Date Transistors MHz

= 8086 1978 29K 5-10
" First 16-bit Intel processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33

" First 32 bit Intel processor , referred to as 1A32
= Added “flat addressing”, capable of running Unix

m Pentium 4E 2004 125M 2800-3800
" First 64-bit Intel x86 processor, referred to as x86-64

m Core 2 2006 291M 1060-3333
" First multi-core Intel processor

m Corei7 2008 731M 1600-4400

= Four cores (our shark machines)
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Intel x86 Processors, cont.

m Machine Evolution

. 386 1985 YRl IntegratedMemory Controller-3'Ch DDR3:
= Pentium 1993 3.1M ’ ; =
" Pentium/MMX 1997 AN (/e 0 Core Core2  Core3

® PentiumPro 1995 6.5M

® Pentium il 1999 8.2M

® Pentium 4 2000 42M Q

= Core 2 Duo 2006 291M Lk Shared L3 Cache

= Corei/ 2008 731M
= Corei7 Skylake 2015 1.9B

m Added Features
" |nstructions to support multimedia operations
" |nstructions to enable more efficient conditional operations
= Transition from 32 bits to 64 bits
" More cores
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Intel x86 Processors, cont.

[ | PaSt Generations Process technology
= 1t Pentium Pro 1995 600 nm
= 1st Pentium Il 1999 250 nm
= 1st Pentium 4 2000 180 nm
= 1t Core 2 Duo 2006 65 nm
. . Process technology dimension
m Recent & Upcoming Generations - width of narrg\\l,ve'lst wirels
1. Nehalem. 2008 45 nm (10 nm = 100 atoms wide)
2. SandyBridge 2011 32 nm
3. lvyBridge 2012 22 nm (But this is changing now.)
4. Haswell 2013 22 nm
5. Broadwell 2014 14 nm
6. Skylake 2015 14 nm
/. Kaby Lake 2016 14 nm
8. Coffee Lake 2017 14 nm
9. Cannon Lake 2018 10 nm
10. Ice Lake 2019 10 nm
11. Tiger Lake 2020 10 nm

12. Alder Lake 2022 “intel 7”7 (10nm+++)
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2018 State of the Art Coffee Lake

m Server Model: Xeon E

m Mobile Model: Core i7

= 2.2-3.2 GHz " |ntegrated graphics
" 45 W m Desktop Model: Core i7 " Multi-socket enabled
" |ntegrated graphics " 3.3-3.8 GHz
= 2.4-4.0 GHz " 80-95 W
= 35-95W
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x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
" Developed x86-64, their own extension to 64 bits

m Recent Years

" Intel got its act together
= 1995-2011: Lead semiconductor “fab” in world
= 2018: #2 largest by SS (#1 is Samsung)
= 2019: reclaimed #1

= AMD fell behind: Spun off GlobalFoundaries

= 2019-20: Pulled ahead! Used TSMC for part of fab

= 2022: Intel re-took the lead
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Intel’s 64-Bit History
m 2001: Intel Attempts Radical Shift from IA32 to IA64

= Totally different architecture (Itanium)
= Executes IA32 code only as legacy
= Performance disappointing

m 2003: AMD Steps in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on I1A64
= Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to IA32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m All but low-end x86 processors support x86-64

= But, lots of code still runs in 32-bit mode
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Our Coverage

m IA32

® The traditional x86
" For 15/18-213: RIP, Summer 2015

m X86-64

= The standard
" shark> gcc hello.c
" shark> gcc —m64 hello.c

m Presentation
= Book covers x86-64
= Web aside on 1A32

= We will only cover x86-64
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