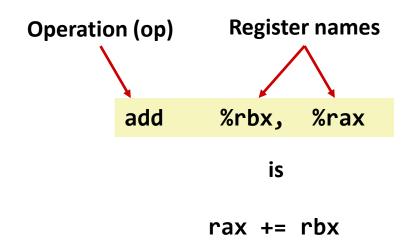
Machine-Level Programming I

15-213/15-513: Introduction to Computer Systems 3rd Lecture, September 2, 2025

Today: Machine Programming I: Basics


- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations
- Condition codes and jumps
- C, assembly, machine code

Introduction to Assembly

- Assembly is a programming language
 - It has types
 - It has control flow shape
 - It is also an intermediate, very limited verbs, need to be explicit
- Assembly is defined by the ISA (instruction set architecture)
 - x86, ARM, RISC-V, etc

Beginning Grammar

Say something in assembly:

Nouns

Registers

- Special parts of the CPU to hold small amounts of data, like local variables
- Names are very specific:

```
%r?x (a,b,c,d)
%r?i (d,s)
%r?p (b,i,s) // Special meanings
%r? (8-15)
```

Memory

Everything else

x86-64 Integer Registers (reference)

%rax	%eax	% r8	%r8d
%rbx	%ebx	% r9	%r9d
%rcx	%ecx	%r10	%r10d
%rdx	%edx	%r11	%r11d
%rsi	%esi	%r12	%r12d
%rdi	%edi	%r13	%r13d
%rsp	%esp	%r14	%r14d
%rbp	%ebp	%r15	%r15d

- Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
- Not part of memory (or cache)

Verbs (i.e., operations)

- Transfer data between memory and register
 - Load data from memory into register
 - Store register data into memory
- Perform arithmetic function on register or memory data
- Transfer control
 - Unconditional jumps to/from procedures
 - Conditional branches
 - Indirect branches

Verbs have optional suffix

- Operation suffix specifies the size(s) involved
 - There are also different register names for the different sizes

Suffix	Register Name	Size (bytes)
q	r	8
1	e (usually)	4
W	see reference	2
b	see reference	1

Moving Data

- x = 5
 mov \$5, %rax
- x = y
 mov %rcx, %rdx
- x = *p
 mov (%rsi), %r8

Memory

Parentheses always denote a memory address computation

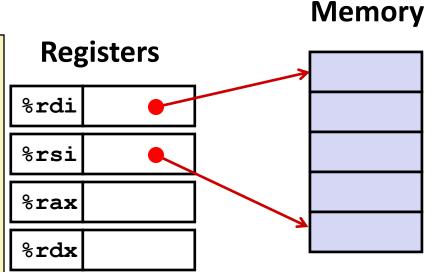
Most operations will then access memory

movq Operand Combinations (reference)

Cannot do memory-memory transfer with a single instruction

Reading Assembly Example

```
void
whatAmI (<type> a, <type> b)
{
     3333
                               whatAmI:
                                           (%rdi), %rax
                                  movq
                                           (%rsi), %rdx
                                  movq
                                           %rdx, (%rdi)
                                  movq
                                           %rax, (%rsi)
                                  movq
                                   ret
                   %rsi
        %rdi
```

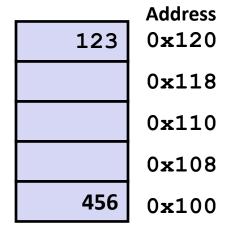

What is <type>?
Find %rdi in the assembly
How is it used?

Reading Assembly Example

```
void swap
   (long *xp, long *yp)
{
   long t0 = *xp;
   long t1 = *yp;
   *xp = t1;
   *yp = t0;
}
```

We have now written the "pseudo-C" for the assembly, using the types and replacing each register with a "variable name".

void swap (long *xp, long *yp) { long t0 = *xp; long t1 = *yp; *xp = t1; *yp = t0; }

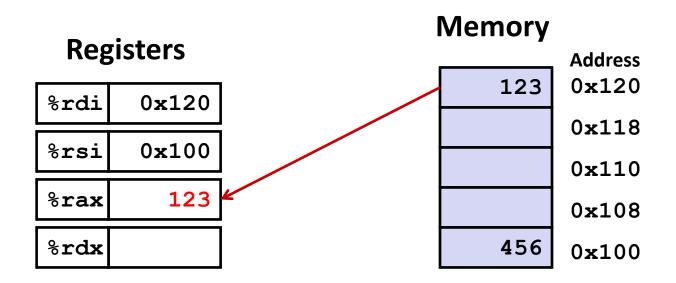



```
Register Value
%rdi xp
%rsi yp
%rax t0
%rdx t1
```

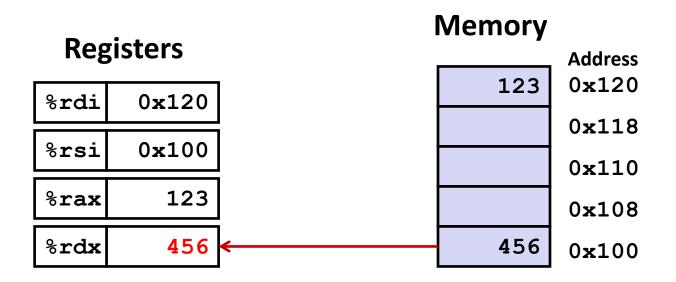
Registers

%rdi	0x120
%rsi	0x100
%rax	
%rdx	

Memory


```
movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

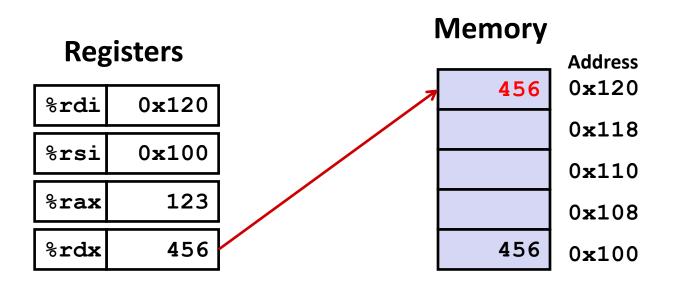

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret
```



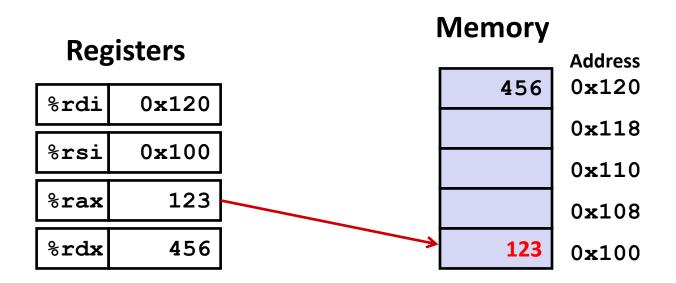
```
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
```



```
movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1
```

movq %rax, (%rsi) # *yp = t0


ret

%rax, (%rsi) # *yp = t0

movq

ret


```
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
```

More memory grammar

Most General Form of Addressing Mode

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]

- D: Constant "displacement" 1, 2, or 4 bytes
- Rb: Base register: Any of 16 integer registers
- Ri: Index register: Any, except for %rsp
- S: Scale: 1, 2, 4, or 8
- If a value is "missing", it is the identity element
 - +0 or *1

Address Computation Examples

%rdx	0xf000
%rcx	0x0100

D(Rb,Ri,S)	Mem[Reg[Rb]+S*Reg[Ri]+ D]
\ '', '''	

- D: Constant "displacement" 1, 2, or 4 bytes
 Rb: Base register: Any of 16 integer registers
 Ri: Index register: Any, except for %rsp

- **S**: Scale: 1, 2, 4, or 8 (why these numbers?)

Expression	Address Computation	Address
0x8(%rdx)		
(%rdx,%rcx)		
(%rdx,%rcx,4)		
0x80(,%rdx,2)		

More Verbs

Two operands (think datalab)

Format	Computation		
addq	Src,Dest	Dest = Dest + Src	
salq	Src,Dest	Dest = Dest << Src	Also called shiq
sarq	Src,Dest	Dest = Dest >> Src	Arithmetic
shrq	Src,Dest	Dest = Dest >> Src	Logical
•••			

•••

One operand (also datalab)

incq	Dest	Dest = Dest + 1
decq	Dest	Dest = Dest - 1
negq	Dest	Dest = - Dest
notq	Dest	Dest = ~Dest

Address Computation Instruction

■ leaq Src, Dst

- Src is address mode expression
- Set Dst to address denoted by expression

Uses

- Computing addresses without a memory reference
 - E.g., translation of p = &x[i];
- Computing arithmetic expressions of the form x + k*y
 - k = 1, 2, 4, or 8

Example

```
long m12(long x)
{
   return x*12;
}
```

Converted to ASM by compiler:

```
leaq (%rdi,%rdi,2), %rax # t = x+2*x
salq $2, %rax # return t<<2</pre>
```

Registers have conventions

Architectural requirements:

- %rip program counter / instruction pointer
 - Only points to the next instruction to execute
- %rsp stack pointer
 - %rbp sometimes also stack related

Conventions:

- %rax return value
- %rdi first argument
- %rsi second argument
- %rdx third argument
- •

Putting it Together

- Arguments?
 - How many?
 - What type(s)?
- Return value?
- Local variables?

```
arith:
  leaq (%rdi,%rsi), %rax
  addq %rdx, %rax
  leaq (%rsi,%rsi,2), %rdx
  salq $4, %rdx
  leaq 4(%rdi,%rdx), %rcx
  imulq %rcx, %rax
  ret
```

Interesting Instructions

- leaq: address computation
- salq: shift
- imulq: multiplication
 - But, only used once

Arithmetic Expression Example

```
long arith
(long x, long y, long z)
{
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  return rval;
}
```

```
arith:
  leaq (%rdi,%rsi), %rax
  addq %rdx, %rax
  leaq (%rsi,%rsi,2), %rdx
  salq $4, %rdx
  leaq 4(%rdi,%rdx), %rcx
  imulq %rcx, %rax
  ret
```

Interesting Instructions

- leaq: address computation
- **salq**: shift
- imulq: multiplication
 - But, only used once

Understanding Arithmetic Expression Example

```
long arith
(long x, long y, long z)
{
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  return rval;
}
```

```
arith:
  leaq (%rdi,%rsi), %rax # t1
  addq %rdx, %rax # t2
  leaq (%rsi,%rsi,2), %rdx
  salq $4, %rdx # t4
  leaq 4(%rdi,%rdx), %rcx # t5
  imulq %rcx, %rax # rval
  ret
```

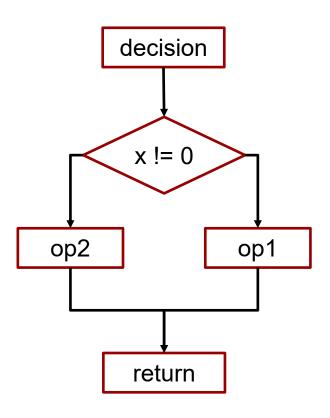
Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rdx	Argument z , t4
%rax	t1, t2, rval
%rcx	t5

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/49105/quizzes/150043

Expressing Inequality


- We want to express numeric relations in assembly
 - Equals, not equals
 - Greater, less than

Control Flow

- We also need assembly to make decisions based on these (in)equalities
 - We call the sequence of instructions executed, the control flow

Control flow

```
extern void op1(void);
extern void op2(void);
void decision(int x) {
    if (x) {
        op1();
    } else {
        op2();
```


Control flow in assembly language

```
extern void op1(void);
extern void op2(void);
void decision(int x) {
    if (x) {
        op1();
    } else {
        op2();
```

```
decision:
    testl %edi, %edi
    je .L2
    call op1
    jmp .L1
.L2:
    call op2
.L1:
    ret
```


Conditional "Goto"

- How did the example work?
- The first jump instruction is conditional
 - It uses processor state set by the test instruction
 - Processor has special registers to hold specific state
- We call this specific state, "condition codes"

Expressing Inequality

- x86 has two instructions to set the specific state
 - cmp
 - test
- Instructions other than lea also implicitly set the state on x86

Compare Instruction

- cmp a, b
 - Computes b a (just like **sub**)
 - Sets condition codes based on result, but...
 - Does not change b
 - Used for if (a < b) { ... } whenever b-a isn't needed for anything else

Test Instruction

- test a, b
 - Computes b&a (just like and)
 - Sets condition codes (only SF and ZF) based on result, but...
 - Does not change b
 - Most common use: test %rX, %rX to compare %rX to zero
 - Second most common use: test %rX, %rY tests if any of the 1-bits in %rY are also 1 in %rX (or vice versa)

Jumping

■jX Instructions

- Jump to different part of code depending on condition codes
- jmp unconditional
- Z
- ZERO
- GE
 - Greater than or equal

Jumping (reference)

■jX Instructions

Jump to different part of code depending on condition codes

jX	Condition	Description
jmp	1	Unconditional
je	ZF	Equal / Zero
jne	~ZF	Not Equal / Not Zero
js	SF	Negative
jns	~SF	Nonnegative
jg	~(SF^OF) &~ZF	Greater (Signed)
jge	~(SF^OF)	Greater or Equal (Signed)
j1	(SF^OF)	Less (Signed)
jle	(SF^OF) ZF	Less or Equal (Signed)
ja	~CF&~ZF	Above (unsigned)
jb	CF	Below (unsigned)

Returning Condition Codes

setX will

- Set low-order byte of destination to 0 or 1 based on combinations of condition codes
- Does not alter remaining 7 bytes

```
int gt (long x, long y)
{
   return x > y;
}

cmpq %rsi, %rdi # Compare x:y
setg %al # Set when >
movzbl %al, %eax # Zero rest of %rax
ret
```

movXYZ - Moving to larger bit widths

- mov with three suffixes will move to larger bit widths
 - $X \{s,z\}$
 - Sign extend
 - Zero extend
 - Y source bit width
 - Z destination bit width
- movzbl %al, %eax
 - z zero
 - b source is 1 byte
 - 1 destination is 4 bytes

Summary

Nouns

Registers

Verbs

Instructions or operations

Suffixes and Annotations

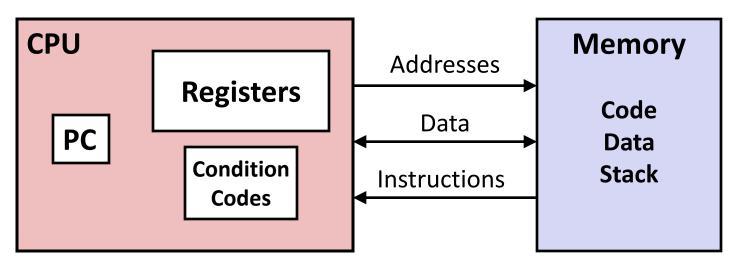
- Specify the size (usually optional)
- Memory addressing mode

Relations

Relies on condition codes and conditional jump (i.e., goto)

Definitions

- Architecture: (also ISA: instruction set architecture) The parts of a processor design that one needs to understand for writing assembly/machine code.
 - Examples: instruction set specification, registers
- **Microarchitecture:** Implementation of the architecture
 - Examples: cache sizes and core frequency


Code Forms:

- Machine Code: The byte-level programs that a processor executes
- Assembly Code: A text representation of machine code

Example ISAs:

- Intel: x86, IA32, Itanium, x86-64
- ARM: Used in almost all mobile phones
- RISC V: New open-source ISA

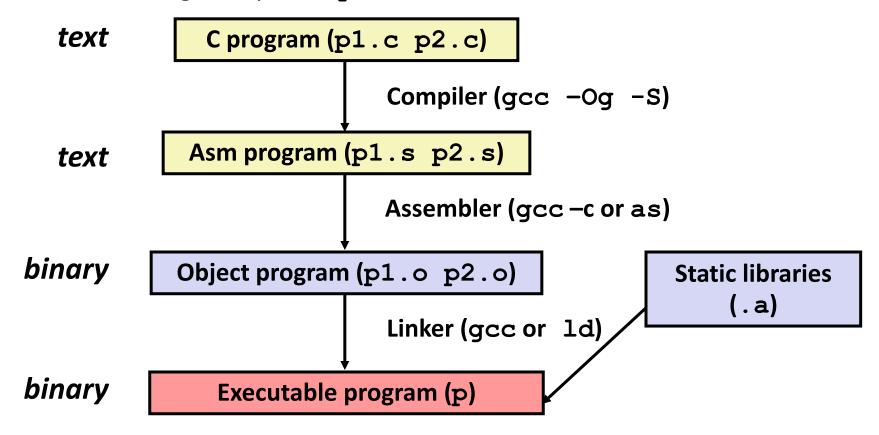
Assembly/Machine Code View

Programmer-Visible State

- PC: Program counter
 - Address of next instruction
 - Called "RIP" (x86-64)
- Register file
 - Heavily used program data
- Condition codes
 - Store status information about most recent arithmetic or logical operation
 - Used for conditional branching

Memory

- Byte addressable array
- Code and user data
- Stack to support procedures


Bryant a

Where does it come from?

- Assembly is usually generated by the compiler
 - We can ask the compiler to show us the assembly
 - We can also generate assembly from machine code
- The compiler runs a separate tool that generates machine code
 - Machine code is just bytes in memory
- Execution gives bytes their "types"

Turning C into Object Code

- Code in files p1.c p2.c
- Compile with command: gcc -Og p1.c p2.c -o p
 - Use debugging-friendly optimizations (-Og)
 - Put resulting binary in file p

Compiling Into Assembly

C Code (sum.c)

Generated x86-64 Assembly

```
sumstore:
   pushq %rbx
   movq %rdx, %rbx
   call plus
   movq %rax, (%rbx)
   popq %rbx
   ret
```

Obtain (on shark machine) with command

Produces file sum.s

Warning: Will get very different results on non-Shark machines (Andrew Linux, Mac OS-X, ...) due to different versions of gcc and different compiler settings.

What it really looks like

```
.globl sumstore
       .type sumstore, @function
sumstore:
.LFB35:
       .cfi startproc
       pushq %rbx
       .cfi def cfa offset 16
       .cfi offset 3, -16
       movq %rdx, %rbx
       call plus
       movq %rax, (%rbx)
       popq %rbx
       .cfi def cfa offset 8
       ret
       .cfi endproc
.LFE35:
       .size sumstore, .-sumstore
```

What it really looks like

```
.globl sumstore
.type sumstore, @function
sumstore:
```

Things that look weird and are preceded by a "are generally directives.

```
.LFB35:
       .cfi startproc
       pushq %rbx
       .cfi def cfa offset 16
       .cfi offset 3, -16
       movq %rdx, %rbx
       call plus
      movq %rax, (%rbx)
      popq %rbx
       .cfi def cfa offset 8
       ret
       .cfi endproc
.LFE35:
       .size sumstore, .-sumstore
```

```
sumstore:
  pushq %rbx
  movq %rdx, %rbx
  call plus
  movq %rax, (%rbx)
  popq %rbx
  ret
```

Object Code

Code for sumstore

0x0400595:

0x53

0x48

0x89

0xd3

0xe8

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

Assembler

- Translates .s into .o
- Binary encoding of each instruction
- Nearly-complete image of executable code
- Missing linkages between code in different files

Linker

- Resolves references between files
- Combines with static run-time libraries
 - E.g., code for malloc, printf
- Some libraries are dynamically linked
 - Linking occurs when program begins execution

Total of 14 bytes

Each instruction

1, 3, or 5 bytes

Starts at address

 0×0400595

Machine Instruction Example

0x40059e: 48 89 03

C Code

Store value t where designated by dest

Assembly

- Move 8-byte value to memory
 - Quad words in x86-64 parlance
- Operands:

t: Register %rax

dest: Register %rbx

*dest: Memory M[%rbx]

Object Code

- 3-byte instruction
- Stored at address 0x40059e

Disassembling Object Code

Disassembled

```
0000000000400595 <sumstore>:
  400595:
           53
                            push
                                   %rbx
  400596: 48 89 d3
                                   %rdx,%rbx
                           mov
  400599: e8 f2 ff ff ff
                           callq 400590 <plus>
  40059e: 48 89 03
                                   %rax, (%rbx)
                           mov
  4005a1:
          5b
                                   %rbx
                           pop
  4005a2: c3
                            reta
```

Disassembler

```
objdump -d sum
```

- Useful tool for examining object code
- Analyzes bit pattern of series of instructions
- Produces approximate rendition of assembly code
- Can be run on either a .out (complete executable) or .o file

Alternate Disassembly

Disassembled

Within gdb Debugger

Disassemble procedure

```
gdb sum
disassemble sumstore
```

Alternate Disassembly

Object Code

0×0400595 : 0x530x480x890xd30xe8 0xf20xff 0xff 0xff0x480x890x030x5b0xc3

Disassembled

Within gdb Debugger

Disassemble procedure

```
gdb sum
disassemble sumstore
```

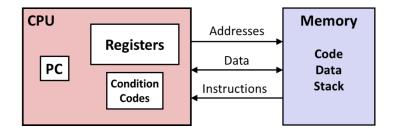
Examine the 14 bytes starting at sumstore

x/14xb sumstore

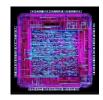
What Can be Disassembled?

```
% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386
No symbols in "WINWORD.EXE".
Disassembly of section .text:
30001000 < text>:
30001000:
30001001:
               Reverse engineering forbidden by
30001003:
             Microsoft End User License Agreement
30001005:
3000100a:
```

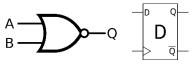
- Anything that can be interpreted as executable code
- Disassembler examines bytes and reconstructs assembly source


Appendix

Levels of Abstraction

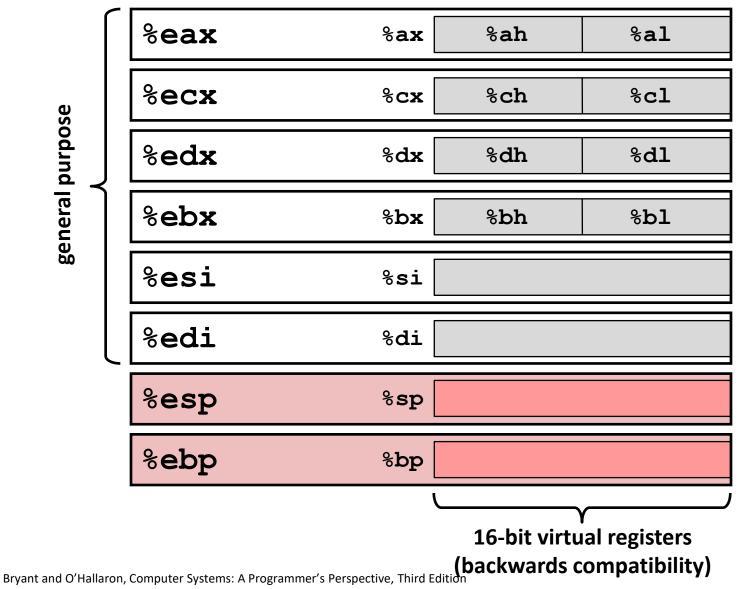

C programmer

```
#include <stdio.h>
int main() {
  int i, n = 10, t1 = 0, t2 = 1, nxt;
  for (i = 1; i <= n; ++i) {
    printf("%d, ", t1);
    nxt = t1 + t2;
    t1 = t2;
    t2 = nxt; }
  return 0; }</pre>
```


Assembly programmer

Computer Designer

Gates, clocks, circuit layout, ...



x86-64 Integer Registers

%rax	%eax	% r8	%r8d
%rbx	%ebx	%r9	%r9d
%rcx	%ecx	%r10	%r10d
%rdx	%edx	%r11	%r11d
%rsi	%esi	%r12	%r12d
%rdi	%edi	%r13	%r13d
%rsp	%esp	%r14	%r14d
%rbp	%ebp	%r15	%r15d

- Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
- Not part of memory (or cache)

Some History: IA32 Registers

Origin (mostly obsolete)

accumulate

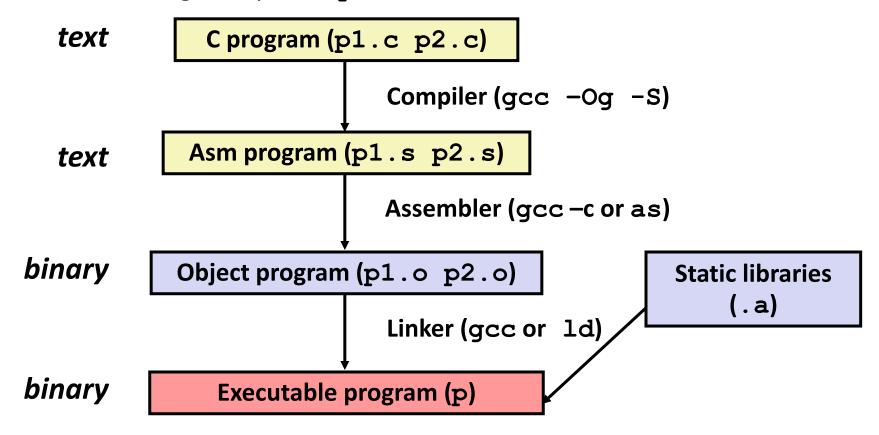
counter

data

base

source index

destination index


stack pointer base pointer

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations
- C, assembly, machine code

Turning C into Object Code

- Code in files p1.c p2.c
- Compile with command: gcc -Og p1.c p2.c -o p
 - Use debugging-friendly optimizations (-Og)
 - Put resulting binary in file p

Compiling Into Assembly

C Code (sum.c)

Generated x86-64 Assembly

```
sumstore:
   pushq %rbx
   movq %rdx, %rbx
   call plus
   movq %rax, (%rbx)
   popq %rbx
   ret
```

Obtain (on shark machine) with command

Produces file sum.s

Warning: Will get very different results on non-Shark machines (Andrew Linux, Mac OS-X, ...) due to different versions of gcc and different compiler settings.

What it really looks like

```
.globl sumstore
       .type sumstore, @function
sumstore:
.LFB35:
       .cfi startproc
       pushq %rbx
       .cfi def cfa offset 16
       .cfi offset 3, -16
       movq %rdx, %rbx
       call plus
       movq %rax, (%rbx)
       popq %rbx
       .cfi def cfa offset 8
       ret
       .cfi endproc
.LFE35:
       .size sumstore, .-sumstore
```

What it really looks like

.globl sumstore

```
.type sumstore, @function
sumstore:
.LFB35:
    .cfi_startproc
    pushq %rbx
```

```
pushq %rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
```

```
.cfi_def_cfa_offset 8
ret
.cfi_endproc
```

.size sumstore, .-sumstore

Things that look weird and are preceded by a "are generally directives.

```
sumstore:
   pushq %rbx
   movq %rdx, %rbx
   call plus
   movq %rax, (%rbx)
   popq %rbx
   ret
```

.LFE35:

Object Code

Code for sumstore

0x0400595:

0x53

0x48

0x89

0xd3

0xe8

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

Assembler

- Translates .s into .o
- Binary encoding of each instruction
- Nearly-complete image of executable code
- Missing linkages between code in different files

Linker

- Resolves references between files
- Combines with static run-time libraries
 - E.g., code for malloc, printf
- Some libraries are dynamically linked
 - Linking occurs when program begins execution

Total of 14 bytes

Each instruction

1, 3, or 5 bytes

Starts at address

 0×0400595

Machine Instruction Example

0x40059e: 48 89 03

C Code

Store value t where designated by dest

Assembly

- Move 8-byte value to memory
 - Quad words in x86-64 parlance
- Operands:

t: Register %rax

dest: Register %rbx

*dest: Memory M[%rbx]

Object Code

- 3-byte instruction
- Stored at address 0x40059e

Disassembling Object Code

Disassembled

```
0000000000400595 <sumstore>:
  400595:
          53
                            push
                                   %rbx
  400596: 48 89 d3
                                   %rdx,%rbx
                           mov
  400599: e8 f2 ff ff ff
                           callq 400590 <plus>
  40059e: 48 89 03
                                   %rax, (%rbx)
                           mov
  4005a1:
          5b
                                   %rbx
                           pop
  4005a2: c3
                            reta
```

Disassembler

```
objdump -d sum
```

- Useful tool for examining object code
- Analyzes bit pattern of series of instructions
- Produces approximate rendition of assembly code
- Can be run on either a .out (complete executable) or .o file

Alternate Disassembly

Disassembled

Within gdb Debugger

Disassemble procedure

```
gdb sum
disassemble sumstore
```

Alternate Disassembly

Object Code

0x0400595: 0x53 0x48 0x89

0xe8

0xd3

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

Disassembled

```
Dump of assembler code for function sumstore:
    0x0000000000400595 <+0>: push %rbx
    0x000000000400596 <+1>: mov %rdx,%rbx
    0x0000000000400599 <+4>: callq 0x400590 <plus>
    0x000000000040059e <+9>: mov %rax,(%rbx)
    0x00000000004005a1 <+12>:pop %rbx
    0x000000000004005a2 <+13>:retq
```

Within gdb Debugger

Disassemble procedure

gdb sum

disassemble sumstore

Examine the 14 bytes starting at sumstore

x/14xb sumstore

What Can be Disassembled?

```
% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386
No symbols in "WINWORD.EXE".
Disassembly of section .text:
30001000 < text>:
30001000:
30001001:
               Reverse engineering forbidden by
30001003:
             Microsoft End User License Agreement
30001005:
3000100a:
```

- Anything that can be interpreted as executable code
- Disassembler examines bytes and reconstructs assembly source

Machine Programming I: Summary

History of Intel processors and architectures

Evolutionary design leads to many quirks and artifacts

C, assembly, machine code

- New forms of visible state: program counter, registers, ...
- Compiler must transform statements, expressions, procedures into low-level instruction sequences

Assembly Basics: Registers, operands, move

 The x86-64 move instructions cover wide range of data movement forms

Arithmetic

 C compiler will figure out different instruction combinations to carry out computation

History: Machine Programming I: Basics

- History of Intel processors and architectures
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations
- C, assembly, machine code

Intel x86 Processors

Dominate laptop/desktop/server market

Evolutionary design

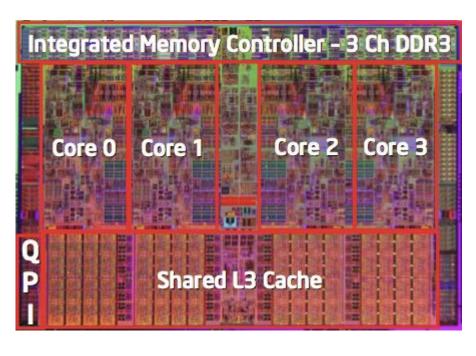
- Backwards compatible up until 8086, introduced in 1978
- Added more features as time goes on
 - Now 3 volumes, about 5,000 pages of documentation

Complex instruction set computer (CISC)

- Many different instructions with many different formats
 - But, only small subset encountered with Linux programs
- Hard to match performance of Reduced Instruction Set Computers (RISC)
- But, Intel has done just that!
 - In terms of speed. Less so for low power.

Intel x86 Evolution: Milestones

Name Date Transistors MHz


■ 8086 1978 29K 5-10

- First 16-bit Intel processor. Basis for IBM PC & DOS
- 1MB address space
- 386 1985 275K 16-33
 - First 32 bit Intel processor, referred to as IA32
 - Added "flat addressing", capable of running Unix
- Pentium 4E 2004 125M 2800-3800
 - First 64-bit Intel x86 processor, referred to as x86-64
- Core 2 2006 291M 1060-3333
 - First multi-core Intel processor
- Core i7 2008 731M 1600-4400
 - Four cores (our shark machines)

Intel x86 Processors, cont.

Machine Evolution

386	1985	0.3M
Pentium	1993	3.1M
Pentium/MMX	1997	4.5M
PentiumPro	1995	6.5M
Pentium III	1999	8.2M
Pentium 4	2000	42M
Core 2 Duo	2006	291M
Core i7	2008	731M

Added Features

Core i7 Skylake

Instructions to support multimedia operations

2015

Instructions to enable more efficient conditional operations

1.9B

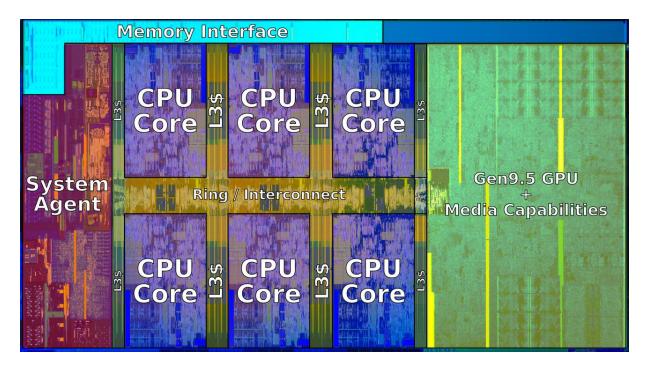
- Transition from 32 bits to 64 bits
- More cores

Intel x86 Processors, cont.

Past Generations

Process technology

1 st Pentium Pro	1995	600 nm
1st Pentium III	1999	250 nm
■ 1 st Pentium 4	2000	180 nm
1st Core 2 Duo	2006	65 nm


Recent & Upcoming Generations

1.	Nehalem	2008	45 nm
2.	Sandy Bridge	2011	32 nm
3.	Ivy Bridge	2012	22 nm
4.	Haswell	2013	22 nm
5.	Broadwell	2014	14 nm
6.	Skylake	2015	14 nm
7.	Kaby Lake	2016	14 nm
8.	Coffee Lake	2017	14 nm
9.	Cannon Lake	2018	10 nm
10.	Ice Lake	2019	10 nm
11.	Tiger Lake	2020	10 nm
12.	Alder Lake	2022	"intel 7" (10nm+++)

Process technology dimension = width of narrowest wires (10 nm ≈ 100 atoms wide)

(But this is changing now.)

2018 State of the Art: Coffee Lake

■ Mobile Model: Core i7

- 2.2-3.2 GHz
- **45 W**

Desktop Model: Core i7

- Integrated graphics
- 2.4-4.0 GHz
- **35-95 W**

■ Server Model: Xeon E

- Integrated graphics
- Multi-socket enabled
- 3.3-3.8 GHz
- **80-95 W**

x86 Clones: Advanced Micro Devices (AMD)

Historically

- AMD has followed just behind Intel
- A little bit slower, a lot cheaper

Then

- Recruited top circuit designers from Digital Equipment Corp. and other downward trending companies
- Built Opteron: tough competitor to Pentium 4
- Developed x86-64, their own extension to 64 bits

Recent Years

- Intel got its act together
 - 1995-2011: Lead semiconductor "fab" in world
 - 2018: #2 largest by \$\$ (#1 is Samsung)
 - 2019: reclaimed #1
- AMD fell behind: Spun off GlobalFoundaries
- 2019-20: Pulled ahead! Used TSMC for part of fab
- 2022: Intel re-took the lead

Intel's 64-Bit History

- 2001: Intel Attempts Radical Shift from IA32 to IA64
 - Totally different architecture (Itanium)
 - Executes IA32 code only as legacy
 - Performance disappointing
- 2003: AMD Steps in with Evolutionary Solution
 - x86-64 (now called "AMD64")
- Intel Felt Obligated to Focus on IA64
 - Hard to admit mistake or that AMD is better
- 2004: Intel Announces EM64T extension to IA32
 - Extended Memory 64-bit Technology
 - Almost identical to x86-64!
- All but low-end x86 processors support x86-64
 - But, lots of code still runs in 32-bit mode

Our Coverage

■ IA32

- The traditional x86
- For 15/18-213: RIP, Summer 2015

■ x86-64

- The standard
- shark> gcc hello.c
- shark> gcc -m64 hello.c

Presentation

- Book covers x86-64
- Web aside on IA32
- We will only cover x86-64