Bits, Bytes, and Integers – Part 2

15-213: Introduction to Computer Systems
3rd Lecture, May 25, 2018

Instructors:
Brian Railing
Autolab/GitHub accounts

- You should have all your accounts by now
- You must be enrolled to get an account
- If you are on waitlist, just keep on hanging in there

- Redshelf and digital content
First Assignment: Data Lab

- Due: Thursday, May 31, 11:59:00 pm
- Last Possible Time to Turn in: Saturday, June 2, 11:59PM
- Read the instructions carefully
- You should have started
- Seek help (office hours have started)
- Based on Lecture 2, 3, and 4
- After today’s lecture you know everything for the integer problems, float problems covered on Tuesday
Summary From Last Lecture

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary
Bit-Level Operations in C

Operations &,, |,, ~,, ^ Available in C

- Apply to any “integral” data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- \(\text{~}0x41 \rightarrow 0xBE\)
 - \(\text{~}0100\ 0001_2 \rightarrow 1011\ 1110_2\)
- \(\text{~}0x00 \rightarrow 0xFF\)
 - \(\text{~}0000\ 0000_2 \rightarrow 1111\ 1111_2\)
- \(0x69 \& 0x55 \rightarrow 0x41\)
 - \(0110\ 1001_2 \& 0101\ 0101_2 \rightarrow 0100\ 0001_2\)
- \(0x69 \mid 0x55 \rightarrow 0x7D\)
 - \(0110\ 1001_2 \mid 0101\ 0101_2 \rightarrow 0111\ 1101_2\)
Logic Operations in C

- Logic Operations: &&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

- Examples (char data type)
 - !0x41 → 0x00
 - !0x00 → 0x01
 - !!0x41→ 0x01
 - 0x69 && 0x55 → 0x01
 - 0x69 || 0x55 → 0x01
 - p && *p (avoids null pointer access)
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

Two’s Complement Examples (w = 5)

\[
\begin{array}{cccccc}
-16 & 8 & 4 & 2 & 1 \\
0 & 1 & 0 & 1 & 0 \\
-16 & 8 & 4 & 2 & 1 \\
1 & 0 & 1 & 1 & 0
\end{array}
\]

10 =

8 + 2 = 10

-10 =

-16 + 4 + 2 = -10
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>(\chi)</th>
<th>(B2U(\chi))</th>
<th>(B2T(\chi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>–8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>–7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>–6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>–5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>–4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>–3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>–2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>–1</td>
</tr>
</tbody>
</table>

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **Expression containing signed and unsigned int:**
 int is cast to unsigned!!
Sign Extension and Truncation

- **Sign Extension**

- **Truncation**
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary
Unsigned Addition

Operands: \(w \) bits

\[
\begin{array}{c}
\begin{array}{c}
\text{u} \\
\text{+ v}
\end{array}
\end{array}
\]

True Sum: \(w+1 \) bits

\[
\begin{array}{c}
\begin{array}{c}
\text{u +}
\end{array}
\end{array}
\]

Discard Carry: \(w \) bits

\[
\text{UAdd}_w(u, v)
\]

- **Standard Addition Function**
 - Ignores carry output

- **Implements Modular Arithmetic**
 \[
 s = \text{UAdd}_w(u, v) = u + v \mod 2^w
 \]

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>

Example:

\[
\begin{array}{c}
\begin{array}{c}
\text{1110 1001} \\
\text{+ 1101 0101}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\text{1 1011 1110} \\
\text{1BE 446}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\text{1011 1110} \\
\text{BE 190}
\end{array}
\end{array}
\]
Visualizing (Mathematical) Integer Addition

- Integer Addition
 - 4-bit integers u, v
 - Compute true sum $\text{Add}_4(u, v)$
 - Values increase linearly with u and v
 - Forms planar surface
Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

True Sum

2^{w+1}

2^w

0

Modular Sum

UAdd$_4(u, v)$

Overflow

Overflow
Two’s Complement Addition

Operands: \(w \) bits

\[
\begin{array}{c}
 u \\
+ v \\
\end{array}
\]

True Sum: \(w+1 \) bits

\[
\begin{array}{c}
 u + v \\
\end{array}
\]

Discard Carry: \(w \) bits

\[
\begin{array}{c}
\text{TAdd}_w(u^y, v) \\
\end{array}
\]

- **TAdd and UAdd have Identical Bit-Level Behavior**
 - Signed vs. unsigned addition in C:
    ```c
    int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v
    ```
 - Will give \(s == t \)

 \[
 \begin{array}{l}
 1110 1001 \\
 + 1101 0101 \\
 \end{array}
 \]

 \[
 \begin{array}{l}
 1 1011 1110 \\
 1011 1110 \\
 \end{array}
 \]
TAdd Overflow

- **Functionality**
 - True sum requires $w+1$ bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

```
 0  111...1
 0  100...0
 0  000...0
 1  011...1
 1  000...0
```

```
True Sum

2^w-1
2^{w-1}-1
0
-2^w
```

```
TAdd Result

011...
000...
100...
```

```
PosOver

NegOver
```
Visualizing 2’s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps Around**
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $<-2^{w-1}$
 - Becomes positive
 - At most once
Characterizing TAdd

Functionality
- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

$$TAdd(u, v) = \begin{cases}
 u + v + 2^w & u + v < TMin_w \text{ (NegOver)} \\
 u + v & TMin_w \leq u + v \leq TMax_w \\
 u + v - 2^w & TMax_w < u + v \text{ (PosOver)}
\end{cases}$$
Negation: Complement & Increment

- Negate through complement and increase
 \[\sim x + 1 = -x \]

- Example
 - Observation: \(\sim x + x = 1111\ldots111 = -1 \)

\[
\begin{array}{cccccccc}
 x & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
+ & \sim x & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline
-1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[x = 15213 \]

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(\sim x)</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>(\sim x + 1)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>
Complement & Increment Examples

$x = 0$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 0</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~0</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>~0+1</td>
<td>0</td>
<td>00 0</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>

$x = TMin$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>-32768</td>
<td>80 0</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>~x</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>~x+1</td>
<td>-32768</td>
<td>80 0</td>
<td>10000000 00000000</td>
</tr>
</tbody>
</table>

Canonical counter example
Multiplication

- **Goal:** Computing Product of w-bit numbers x, y
 - Either signed or unsigned

- **But, exact results can be bigger than w bits**
 - Unsigned: up to $2w$ bits
 - Result range: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Two’s complement min (negative): Up to $2w-1$ bits
 - Result range: $x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$
 - Two’s complement max (positive): Up to $2w$ bits, but only for $(TMin_w)^2$
 - Result range: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$

- **So, maintaining exact results...**
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: \(w \) bits

True Product: \(2w \) bits

Discard \(w \) bits: \(w \) bits

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits

- **Implements Modular Arithmetic**
 \[
 \text{UMult}_w(u, v) = u \cdot v \mod 2^w
 \]

\[
\begin{array}{cccc}
1110 & 1001 & & \text{E9} & 223 \\
\times & 1101 & 0101 & \times & \text{D5} & \times & 213 \\
1100 & 0001 & 1101 & 0010 & \text{C1DD} & 47499 \\
\hline
1101 & 1101 & \text{DD} & 221 \\
\end{array}
\]
Signed Multiplication in C

Operands: \(w \) bits

True Product: \(2w \) bits

Discard \(w \) bits: \(w \) bits

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1110</td>
<td>1001</td>
<td></td>
<td></td>
<td>E9</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>-23</td>
</tr>
<tr>
<td>1101</td>
<td>0101</td>
<td></td>
<td></td>
<td>D5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>1100</td>
<td>0001</td>
<td>1101</td>
<td>0010</td>
<td>C1DD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16896</td>
</tr>
<tr>
<td>1101</td>
<td>1101</td>
<td></td>
<td></td>
<td>DD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-35</td>
</tr>
</tbody>
</table>
Power-of-2 Multiply with Shift

- **Operation**
 - \(u \ll k \) gives \(u \times 2^k \)
 - Both signed and unsigned

 Operands: \(w \) bits

 True Product: \(w+k \) bits

 Discard \(k \) bits: \(w \) bits

- **Examples**
 - \(u \ll 3 \equiv u \times 8 \)
 - \((u \ll 5) - (u \ll 3) \equiv u \times 24 \)
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(x \gg 1)</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>(x \gg 4)</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>(x \gg 8)</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when $u < 0$

Operands:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operands</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Division:

<table>
<thead>
<tr>
<th></th>
<th>x / 2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division</td>
<td></td>
</tr>
</tbody>
</table>

Result: $\text{RoundDown}(x / 2^k)$

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>-7606.5</td>
<td>E2</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>-950.8125</td>
<td>FC</td>
<td>111111100 01001001</td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>-59.4257813</td>
<td>FF</td>
<td>111111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want \(\lfloor \frac{x}{2^k} \rfloor \) (Round Toward 0)
- Compute as \(\lfloor \frac{x+2^k-1}{2^k} \rfloor \)
 - In C: \((x + (1<<k) - 1) \gg k\)
 - Biases dividend toward 0

Case 1: No rounding

Dividend:

\[
\begin{array}{c}
\underline{u} \\
\underline{+2^k}
\end{array}
\]

\[
\begin{array}{c}
\underline{1} \\
\underline{0}
\end{array}
\]

Divisor:

\[
\begin{array}{c}
\underline{l} \\
\underline{2}
\end{array}
\]

\[
\begin{array}{c}
\underline{1} \\
\underline{0}
\end{array}
\]

Binary Point

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>[\frac{x}{2^k}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x]</td>
<td>[\cdots]</td>
</tr>
<tr>
<td>+2^k</td>
<td>[\cdots 0 0 1 \cdots 1 1]</td>
</tr>
<tr>
<td>-1</td>
<td>[\cdots]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisor:</th>
<th>[\frac{x^k}{2^k}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[l]</td>
<td>[\cdots]</td>
</tr>
<tr>
<td>2</td>
<td>[\cdots 0 1 0 \cdots 0 0]</td>
</tr>
</tbody>
</table>

Biasing adds 1 to final result
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings
Arithmetic: Basic Rules

- **Addition:**
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition mod \(2^w\)
 - Mathematical addition + possible subtraction of \(2^w\)
 - Signed: modified addition mod \(2^w\) (result in proper range)
 - Mathematical addition + possible addition or subtraction of \(2^w\)

- **Multiplication:**
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication mod \(2^w\)
 - Signed: modified multiplication mod \(2^w\) (result in proper range)
Why Should I Use Unsigned?

- Don’t use without understanding implications
 - Easy to make mistakes
    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
        a[i] += a[i+1];
    ```
 - Can be very subtle
    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
        ...
    ```
Counting Down with Unsigned

- **Proper way to use unsigned as loop index**
  ```c
  unsigned i;
  for (i = cnt-2; i < cnt; i--)
    a[i] += a[i+1];
  ```

- **See Robert Seacord, Secure Coding in C and C++**
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0 - 1 \rightarrow UMax$

- **Even better**
  ```c
  size_t i;
  for (i = cnt-2; i < cnt; i--)
    a[i] += a[i+1];
  ```
 - Data type `size_t` defined as unsigned value with length = word size
 - Code will work even if `cnt = UMax`
 - What if `cnt` is signed and < 0?
Why Should I Use Unsigned? (cont.)

- **Do Use When Performing Modular Arithmetic**
 - Multiprecision arithmetic

- **Do Use When Using Bits to Represent Sets**
 - Logical right shift, no sign extension

- **Do Use In System Programming**
 - Bit masks, device commands, …
Integer Arithmetic Example

<table>
<thead>
<tr>
<th></th>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
<td>1111</td>
</tr>
</tbody>
</table>

unsigned char

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3</td>
<td>243</td>
<td>1111 0011</td>
</tr>
<tr>
<td>+ 52</td>
<td>+ 82</td>
<td>+ 0101 0010</td>
</tr>
<tr>
<td>145</td>
<td>325</td>
<td>1 0100 0101</td>
</tr>
<tr>
<td>45</td>
<td>69</td>
<td>0101 0101</td>
</tr>
</tbody>
</table>

unsigned char

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>25</td>
<td>0001 1001</td>
</tr>
<tr>
<td>* 02</td>
<td>* 2</td>
<td>* 0000 0010</td>
</tr>
<tr>
<td>032</td>
<td>50</td>
<td>0 0011 0010</td>
</tr>
<tr>
<td>32</td>
<td>50</td>
<td>0011 0010</td>
</tr>
</tbody>
</table>
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it’s not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address

- Note: system provides private address spaces to each “process”
 - Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others
Machine Words

- Any given computer has a “Word Size”
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2^{32} bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That’s 18.4×10^{18}
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

- **Addresses Specify Byte Locations**
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

<table>
<thead>
<tr>
<th>Addr</th>
<th>32-bit Words</th>
<th></th>
<th>64-bit Words</th>
<th></th>
<th>Bytes</th>
<th>Addr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0001</td>
<td></td>
</tr>
<tr>
<td>0008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0002</td>
<td></td>
</tr>
<tr>
<td>0012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0003</td>
<td></td>
</tr>
<tr>
<td>0016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0004</td>
<td></td>
</tr>
<tr>
<td>0020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0005</td>
<td></td>
</tr>
<tr>
<td>0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0006</td>
<td></td>
</tr>
<tr>
<td>0028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0007</td>
<td></td>
</tr>
<tr>
<td>0032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0008</td>
<td></td>
</tr>
<tr>
<td>0036</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0009</td>
<td></td>
</tr>
<tr>
<td>0040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td>0044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0011</td>
<td></td>
</tr>
<tr>
<td>0048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0012</td>
<td></td>
</tr>
<tr>
<td>0052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0013</td>
<td></td>
</tr>
<tr>
<td>0056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0014</td>
<td></td>
</tr>
<tr>
<td>0060</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0015</td>
<td></td>
</tr>
</tbody>
</table>
Example Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Typical 64-bit</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address
Byte Ordering Example

Example
- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

Big Endian

<table>
<thead>
<tr>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

Little Endian

<table>
<thead>
<tr>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
Representing Integers

```
int A = 15213;

int B = -15213;

long int C = 15213;
```

Decimal: 15213
Binary: 0011 1011 0110
Hex: 3 B 6 D

Two’s complement representation
Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p	0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- %p: Print pointer
- %x: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```c
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th></th>
<th>Sun</th>
<th>IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
<td>AC</td>
<td>3C</td>
<td></td>
</tr>
<tr>
<td>FF</td>
<td>28</td>
<td>1B</td>
<td></td>
</tr>
<tr>
<td>FB</td>
<td>F5</td>
<td>FE</td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>FF</td>
<td>82</td>
<td></td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects

Even get different results each time run program
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0

- **Compatibility**
 - Byte ordering not an issue

```c
char S[6] = "18213";
```

<table>
<thead>
<tr>
<th>IA32</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>
Reading Byte-Reversed Listings

Disassembly
- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

Deciphering Numbers
- Value: 0x12ab
- Pad to 32 bits: 0x000012ab
- Split into bytes: 00 00 12 ab
- Reverse: ab 12 00 00
Integer C Puzzles

\[
x < 0 \Rightarrow (x \times 2) < 0
\]
\[
ux \geq 0
\]
\[
x \& 7 == 7 \Rightarrow (x \ll 30) < 0
\]
\[
ux > -1
\]
\[
x > y \Rightarrow -x < -y
\]
\[
x \times x \geq 0
\]
\[
x > 0 \&\& y > 0 \Rightarrow x + y > 0
\]
\[
x \geq 0 \Rightarrow -x \leq 0
\]
\[
x <= 0 \Rightarrow -x >= 0
\]
\[
(x \text{|-x}) \ll 31 == -1
\]
\[
u x \ll 3 == ux/8
\]
\[
x \ll 3 == x/8
\]
\[
x \& (x-1) != 0
\]

Initialization

```
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```
Summary

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary