Bits, Bytes, and Integers – Part 2

15-213: Introduction to Computer Systems
3rd Lecture, Jan. 22, 2019
Assignment Announcements

- **Lab 0 available via course web page and Autolab.**
 - Due **Today**, Tues., Jan. 22, 11:59pm
 - No grace days
 - No late submissions
 - Just do it!

- **Lab 1 available via Autolab**
 - Due Thurs., Jan. 31, 11:59pm
 - Read instructions carefully: writeup, bits.c, tests.c
 - Quirky software infrastructure
 - Based on lectures 2, 3, and 4 (CS:APP Chapter 2)
 - After today’s lecture you will know everything for the integer problems
 - Floating point covered Thurs. Jan. 24
Summary From Last Lecture

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

Two’s Complement Examples (w = 5)

-16 8 4 2 1

10 = 0 1 0 1 0 8+2 = 10

-16 8 4 2 1

-10 = 1 0 1 1 0 -16+4+2 = -10

Sign Bit

Unsigned Two's Complement
Unsigned & Signed Numeric Values

Equivalence
- Same encodings for nonnegative values

Uniqueness
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

Expression containing signed and unsigned int:

```c
int is cast to unsigned
```
Sign Extension and Truncation

- **Sign Extension**

- **Truncation**
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
 - Addition, negation, multiplication, shifting

- Representations in memory, pointers, strings

Summary
Unsigned Addition

Operands: \(w \) bits

True Sum: \(w + 1 \) bits

Discard Carry: \(w \) bits

\[
\begin{array}{c}
\text{UAdd}_w(u, v) = u + v \mod 2^w \\
\text{True Sum: } \underbrace{\begin{array}{c}
\text{True Sum: } \\
\text{Discard Carry: }
\end{array}}_{\text{Discard Carry: }}
\end{array}
\]

- **Standard Addition Function**
 - Ignores carry output

- **Implements Modular Arithmetic**

\[
s = \text{UAdd}_w(u, v) = u + v \mod 2^w
\]

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
</tr>
</tbody>
</table>

unsigned char \[1110 \ 1001 \quad \text{E9} \quad 223 \]
\[+ \ 1101 \ 0101 \quad + \ \text{D5} \quad + \ 213 \]
\[1 \ 1011 \ 1110 \quad \text{1BE} \quad 446 \]
\[1011 \ 1110 \quad \text{BE} \quad 190 \]
Visualizing (Mathematical) Integer Addition

- Integer Addition
 - 4-bit integers u, v
 - Compute true sum $\text{Add}_4(u, v)$
 - Values increase linearly with u and v
 - Forms planar surface
Visualizing Unsigned Addition

Wraps Around
- If true sum ≥ 2^w
- At most once

True Sum

2^{w+1}

2^w

0

Modular Sum

Overflow

UAdd_4(u, v)
Two’s Complement Addition

Operands: \(w \) bits

\[
\begin{array}{c}
\text{u} \\
\end{array}
\]

\[
\begin{array}{c}
\text{v} \\
\end{array}
\]

True Sum: \(w+1 \) bits

\[
\begin{array}{c}
u + v \\
\end{array}
\]

Discard Carry: \(w \) bits

\[
\begin{array}{c}
\text{TAdd}_w(u, v) \\
\end{array}
\]

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

    ```
    int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v
    ```
 - Will give \(s == t \)

\[
\begin{array}{c}
1110 1001 \\
+ 1101 0101 \\
\end{array}
\]

\[
\begin{array}{c}
E9 \\
+ D5 \\
\end{array}
\]

\[
\begin{array}{c}
1BE \\
\end{array}
\]

\[
\begin{array}{c}
1011 1110 \\
\end{array}
\]

\[
\begin{array}{c}
BE \\
\end{array}
\]

\[
\begin{array}{c}
-23 \\
+ -43 \\
\end{array}
\]

\[
\begin{array}{c}
-66 \\
\end{array}
\]
TAdd Overflow

Functionality

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

![Diagram of TAdd Overflow](image)

True Sum

- $011\ldots1$
- $0100\ldots0$
- $0000\ldots0$
- $1011\ldots1$
- $1000\ldots0$
- -2^w
- -2^w-1
- 2^w-1
- 2^w-1-1

TAdd Result

- $011\ldots1$
- $000\ldots0$
- $100\ldots0$
Visualizing 2’s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps Around**
 - If sum \(\geq 2^{w-1} \)
 - Becomes negative
 - At most once
 - If sum < \(-2^{w-1}\)
 - Becomes positive
 - At most once
Characterizing TAdd

Functionality
- True sum requires \(w+1 \) bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

\[
TAdd_w(u,v) = \begin{cases}
 u + v + 2^w & u + v < TMin_w \quad \text{(NegOver)} \\
 u + v & TMin_w \leq u + v \leq TMax_w \\
 u + v - 2^w & TMax_w < u + v \quad \text{(PosOver)}
\end{cases}
\]
Multiplication

- **Goal:** Computing Product of w-bit numbers x, y
 - Either signed or unsigned

- **But, exact results can be bigger than w bits**
 - Unsigned: up to $2w$ bits
 - Result range: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Two’s complement min (negative): Up to $2w-1$ bits
 - Result range: $x \times y \geq (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two’s complement max (positive): Up to $2w$ bits, but only for $TMin_w$
 - Result range: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$

- **So, maintaining exact results...**
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: \(w \) bits

True Product: \(2^w \) bits

Discard \(w \) bits: \(w \) bits

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits

- **Implements Modular Arithmetic**

\[
\text{UMult}_w(u, v) = u \cdot v \mod 2^w
\]

Example:

\[
\begin{array}{c}
\text{1110 1001} \\
* \text{1101 0101} \\
\hline
\text{1100 0001 1101 1101}
\end{array}
\quad \begin{array}{c}
\text{E9} \\
* \text{D5} \\
\hline
\text{C1DD}
\end{array}
\quad \begin{array}{c}
\text{223} \\
* \text{213} \\
\hline
\text{47499}
\end{array}
\quad \begin{array}{c}
\text{1101 1101} \\
\text{DD} \\
\text{221}
\end{array}
\]
Signed Multiplication in C

Operands: w bits

True Product: $2w$ bits

Discard w bits: w bits

- **Standard Multiplication Function**
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

<table>
<thead>
<tr>
<th>1110 1001</th>
<th>E9</th>
<th>-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>1101 0101</td>
<td>* D5</td>
</tr>
<tr>
<td>0000 0011 1101 1101</td>
<td>03DD</td>
<td>989</td>
</tr>
<tr>
<td>1101 1101</td>
<td>DD</td>
<td>-35</td>
</tr>
</tbody>
</table>
Power-of-2 Multiply with Shift

Operation
- \(u << k \) gives \(u \times 2^k \)
- Both signed and unsigned

Operands: \(w \) bits

\[
\begin{array}{c}
\text{u} \\
\cdot 2^k \\
\text{w+k bits} \\
\text{Discard} \ k \ \text{bits:} \ w \ \text{bits}
\end{array}
\]

True Product: \(w+k \) bits

\[
\begin{array}{c}
\text{w bits} \\
\text{UMult}_w(u, 2^k) \\
\text{TMult}_w(u, 2^k)
\end{array}
\]

Examples
- \(u << 3 \) \(\equiv \) \(u \times 8 \)
- \((u << 5) - (u << 3) \equiv u \times 24 \)
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Unsigned Power-of-2 Divide with Shift

- **Quotient of Unsigned by Power of 2**
 - $u \gg k$ gives $\lfloor u / 2^k \rfloor$
 - Uses logical shift

Division Table

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>$x \gg 1$</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>$x \gg 4$</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>$x \gg 8$</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - \(x >> k \) gives \(\lfloor x / 2^k \rfloor \)
 - Uses arithmetic shift
 - Rounds wrong direction when \(u < 0 \)

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y >> 1)</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>(y >> 4)</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111110 01001001</td>
</tr>
<tr>
<td>(y >> 8)</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

- **Quotient of Negative Number by Power of 2**
 - Want $\left\lfloor \frac{x}{2^k} \right\rfloor$ (Round Toward 0)
 - Compute as $\left\lfloor \frac{x+2^k-1}{2^k} \right\rfloor$
 - In C: $(x + (1<<k) -1) >> k$
 - Biases dividend toward 0

Case 1: No rounding

Dividend:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>•••</th>
<th>0</th>
<th>•••</th>
<th>0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$+2^k-1$</td>
<td>0</td>
<td>•••</td>
<td>0 0 1</td>
<td>•••</td>
<td>1 1</td>
</tr>
</tbody>
</table>

Divisor:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>•••</th>
<th>1</th>
<th>•••</th>
<th>1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^k</td>
<td>0</td>
<td>•••</td>
<td>0 1 0</td>
<td>•••</td>
<td>0 0</td>
</tr>
</tbody>
</table>

$\left\lfloor \frac{u}{2^k} \right\rfloor$

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: \(x \)

\[
x + 2^k - 1 = 0 \cdot \ldots \cdot 0 \cdot 1 \cdot \ldots \cdot 1 \cdot 1\]

Divisor: \(\frac{x}{2^k} \)

\[
\left\lfloor \frac{x}{2^k} \right\rfloor = 1 \cdot \ldots \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot \ldots
\]

\[
\left\lfloor \frac{x}{2^k} \right\rfloor = 1 \cdot \ldots \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot \ldots
\]

\[
\left\lfloor \frac{x}{2^k} \right\rfloor = 1 \cdot \ldots \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot \ldots
\]

\[
\left\lfloor \frac{x}{2^k} \right\rfloor = 1 \cdot \ldots \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot \ldots
\]

\[
\left\lfloor \frac{x}{2^k} \right\rfloor = 1 \cdot \ldots \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot \ldots
\]

\[
\left\lfloor \frac{x}{2^k} \right\rfloor = 1 \cdot \ldots \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot \ldots
\]

\[
\left\lfloor \frac{x}{2^k} \right\rfloor = 1 \cdot \ldots \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot \ldots
\]

\[
\left\lfloor \frac{x}{2^k} \right\rfloor = 1 \cdot \ldots \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot \ldots
\]

\[
\left\lfloor \frac{x}{2^k} \right\rfloor = 1 \cdot \ldots \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot \ldots
\]

\[
\left\lfloor \frac{x}{2^k} \right\rfloor = 1 \cdot \ldots \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot \ldots
\]

\[
\left\lfloor \frac{x}{2^k} \right\rfloor = 1 \cdot \ldots \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot \ldots
\]

\[
\left\lfloor \frac{x}{2^k} \right\rfloor = 1 \cdot \ldots \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot \ldots
\]

Biasing adds 1 to final result
Negation: Complement & Increment

- Negate through complement and increase
 \[\neg x + 1 = -x \]

- Example
 - Observation: \[\neg x + x = 111\ldots111 = -1 \]

\[
\begin{align*}
\begin{array}{c}
x \\
\neg x \\
\neg x + 1 \\
y
\end{array}
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(\neg x)</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>(\neg x + 1)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

\(x = 15213 \)
Complement & Increment Examples

$x = 0$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~0</td>
<td>-1</td>
<td>FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>~0+1</td>
<td>0</td>
<td>00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>

$x = \text{TMin}$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>-32768</td>
<td>80</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>~x</td>
<td>32767</td>
<td>7F</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>~x+1</td>
<td>-32768</td>
<td>80</td>
<td>10000000 00000000</td>
</tr>
</tbody>
</table>

Canonical counter example
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
Arithmetic: Basic Rules

- **Addition:**
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

- **Multiplication:**
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication mod 2^w
 - Signed: modified multiplication mod 2^w (result in proper range)
Why Should I Use Unsigned?

Don’t use without understanding implications

- Easy to make mistakes

  ```c
  unsigned i;
  for (i = cnt-2; i >= 0; i--)
    a[i] += a[i+1];
  ```

- Can be very subtle

  ```c
  #define DELTA sizeof(int)
  int i;
  for (i = CNT; i-DELTA >= 0; i-= DELTA)
    ...
  ```
Counting Down with Unsigned

- Proper way to use unsigned as loop index

  ```c
  unsigned i;
  for (i = cnt-2; i < cnt; i--)
    a[i] += a[i+1];
  ```

- See Robert Seacord, *Secure Coding in C and C++*

 - C Standard guarantees that unsigned addition will behave like modular arithmetic

 - \(0 - 1 \rightarrow UMax\)

- Even better

  ```c
  size_t i;
  for (i = cnt-2; i < cnt; i--)
    a[i] += a[i+1];
  ```

 - Data type `size_t` defined as unsigned value with length = word size
Why Should I Use Unsigned? (cont.)

- **Do Use When Performing Modular Arithmetic**
 - Multiprecision arithmetic

- **Do Use When Using Bits to Represent Sets**
 - Logical right shift, no sign extension

- **Do Use In System Programming**
 - Bit masks, device commands,...
Quiz Time!

Check out:

https://canvas.cmu.edu/courses/8555
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it’s not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address

- Note: system provides private address spaces to each “process”
 - Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others
Machine Words

Any given computer has a “Word Size”
- Nominal size of integer-valued data
 - and of addresses
- Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2^{32} bytes)
- Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That’s 18.4×10^{18}
- Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

- **Addresses Specify Byte Locations**
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Example Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Typical 64-bit</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?

- Conventions
 - Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Linux
 - Least significant byte has lowest address
Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>Little Endian</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x100</td>
<td>0x100</td>
</tr>
<tr>
<td>0x101</td>
<td>0x101</td>
</tr>
<tr>
<td>0x102</td>
<td>0x102</td>
</tr>
<tr>
<td>0x103</td>
<td>0x103</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>23</td>
<td>45</td>
</tr>
<tr>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>67</td>
<td>01</td>
</tr>
</tbody>
</table>
Representing Integers

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

int A = 15213;

long int C = 15213;

int B = -15213;

Two’s complement representation
Examining Data Representations

- **Code to Print Byte Representation of Data**
 - Casting pointer to unsigned char * allows treatment as a byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len)
{
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- %p: Print pointer
- %x: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```c
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```
Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

```
int B = -15213;
int *P = &B;
```
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - _man ascii for code table_
 - String should be null-terminated
 - Final character = 0

- **Compatibility**
 - Byte ordering not an issue

```
char S[6] = "18213";
```
Reading Byte-Reversed Listings

- **Disassembly**
 - Text representation of binary machine code
 - Generated by program that reads the machine code

- **Example Fragment**

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

- **Deciphering Numbers**
 - Value: 0x12ab
 - Pad to 32 bits: 0x000012ab
 - Split into bytes: 00 00 12 ab
 - Reverse: ab 12 00 00
Integer C Puzzles

x < 0 \implies ((x*2) < 0) \times
ux >= 0 \times
x & 7 == 7 \implies (x<<30) < 0 \times
ux > -1 \times
x > y \implies -x < -y \times
x * x >= 0 \times
x > 0 && y > 0 \implies x + y > 0 \times
x >= 0 \implies -x <= 0 \times
x <= 0 \implies -x >= 0 \times
(x|-x)>>31 == -1 \times
ux >> 3 == ux/8 \times
x >> 3 == x/8 \times
x & (x-1) != 0 \times

Initialization

```
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```
Summary

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary