Bits, Bytes, and Integers – Part 2

15-213: Introduction to Computer Systems
3rd Lecture, Jan. 21, 2020
Assignment Announcements

- Lab 0 available via course web page and Autolab.
 - Due Thursday, Jan. 23, 11:00pm
 - No grace days
 - No late submissions
 - Just do it!

- Lab 1 available via Autolab
 - Due Thurs., Jan. 30, 11:00pm
 - Read instructions carefully: writeup, bits.c, tests.c
 - Quirky software infrastructure
 - Based on lectures 2, 3, and 4 (CS:APP Chapter 2)
 - After today’s lecture you will know everything for the integer problems
 - Floating point covered Thurs. Jan. 23
Summary From Last Lecture

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary
Encoding Integers

Unsigned

\[
B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i
\]

Two’s Complement

\[
B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i
\]

Two’s Complement Examples (w = 5)

<table>
<thead>
<tr>
<th>(-16)</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(-16)</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-10)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Unsigned & Signed Numeric Values

Equivalence
- Same encodings for nonnegative values

Uniqueness
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

Expression containing signed and unsigned int:
- \(\text{int is cast to unsigned} \)

<table>
<thead>
<tr>
<th>(X)</th>
<th>B2U((X))</th>
<th>B2T((X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Sign Extension and Truncation

- **Sign Extension**

- **Truncation**
Misunderstanding integers can lead to the end of the world as we know it!

- Thule (Qaanaaq), Greenland
- US DoD “Site J” Ballistic Missile Early Warning System (BMEWS)
- 10/5/60: world nearly ends
- Missile radar echo: 1/8s
- BMEWS reports: 75s echo(!)
- 1000s of objects reported
- NORAD alert level 5:
 - Immediate incoming nuclear attack!!!!
- Kruschev was in NYC 10/5/60 (weird time to attack)
 - someone in Qaanaaq said “why not go check outside?”
- “Missiles” were actually THE MOON RISING OVER NORWAY
- Expected max distance: 3000 mi; Moon distance: .25M miles!
- .25M miles % sizeof(distance) = 2200mi.
- Overflow of distance nearly caused nuclear apocalypse!!
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary
Unsigned Addition

Operands: \(w \) bits

\[
\begin{align*}
\text{True Sum: } w+1 \text{ bits} \\
u + v & \quad \text{UAdd}_w(u, v) \\
\end{align*}
\]

Discard Carry: \(w \) bits

- **Standard Addition Function**
 - Ignores carry output

- **Implements Modular Arithmetic**
 \[
 s = \text{UAdd}_w(u, v) = u + v \mod 2^w
 \]

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>

Unsigned Addition

Operands: \(w \) bits

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

\[UAdd_w(u, v) = u + v \mod 2^w \]

Standard Addition Function
- Ignores carry output

Implements Modular Arithmetic

\[s = UAdd_w(u, v) = u + v \mod 2^w \]
Visualizing (Mathematical) Integer Addition

- Integer Addition
 - 4-bit integers u, v
 - Compute true sum $Add_4(u, v)$
 - Values increase linearly with u and v
 - Forms planar surface

$Add_4(u, v)$
Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

True Sum

2^{w+1}

2^w

0

Modular Sum

Overflow

Overflow

$UAdd_4(u, v)$

Two’s Complement Addition

Operands: w bits

\[
\begin{array}{c}
\begin{array}{c}
\text{u} \\
\text{+ v}
\end{array} \\
\hline
\text{u + v}
\end{array}
\]

True Sum: $w+1$ bits

Discard Carry: w bits

\[
\begin{array}{c}
\text{TAdd}_w(u, v)
\end{array}
\]

- **TAdd and UAdd have Identical Bit-Level Behavior**
 - Signed vs. unsigned addition in C:
 \[
 \text{int s, t, u, v;}
 \]
 \[
 \text{s = (int) ((unsigned) u + (unsigned) v);} \\
 \text{t = u + v}
 \]
 - Will give $s == t$
 \[
 \begin{array}{c}
 \text{1110 1001} \\
 + \ 1101 0101 \\
 \hline
 \text{1 1011 1110}
 \end{array}
 \]
 \[
 \begin{array}{c}
 \text{E9} \\
 \text{D5} \\
 \hline
 \text{1BE}
 \end{array}
 \]
 \[
 \begin{array}{c}
 \text{1110 1001} \\
 + \ 1101 0101 \\
 \hline
 \text{1 1011 1110}
 \]
 \[
 \begin{array}{c}
 \text{E9} \\
 \text{D5} \\
 \hline
 \text{1BE}
 \]
 \[
 \begin{array}{c}
 \text{1011 1110} \\
 \hline
 \text{BE}
 \end{array}
 \]
 \[
 \begin{array}{c}
 \text{1110 1001} \\
 + \ 1101 0101 \\
 \hline
 \text{1 1011 1110}
 \]
 \[
 \begin{array}{c}
 \text{E9} \\
 \text{D5} \\
 \hline
 \text{1BE}
 \]
 \[
 \begin{array}{c}
 \text{1011 1110} \\
 \hline
 \text{BE}
 \end{array}
 \]
 \[
 \begin{array}{c}
 \text{1110 1001} \\
 + \ 1101 0101 \\
 \hline
 \text{1 1011 1110}
 \]
 \[
 \begin{array}{c}
 \text{E9} \\
 \text{D5} \\
 \hline
 \text{1BE}
 \]
 \[
 \begin{array}{c}
 \text{1011 1110} \\
 \hline
 \text{BE}
 \end{array}
 \]
 \[
 \begin{array}{c}
 \text{1110 1001} \\
 + \ 1101 0101 \\
 \hline
 \text{1 1011 1110}
 \]
 \[
 \begin{array}{c}
 \text{E9} \\
 \text{D5} \\
 \hline
 \text{1BE}
 \]
 \[
 \begin{array}{c}
 \text{1011 1110} \\
 \hline
 \text{BE}
 \end{array}
 \]
 \[
 \begin{array}{c}
 \text{1110 1001} \\
 + \ 1101 0101 \\
 \hline
 \text{1 1011 1110}
 \]
 \[
 \begin{array}{c}
 \text{E9} \\
 \text{D5} \\
 \hline
 \text{1BE}
 \]
 \[
 \begin{array}{c}
 \text{1011 1110} \\
 \hline
 \text{BE}
 \end{array}
 \]
 \[
 \begin{array}{c}
 \text{1110 1001} \\
 + \ 1101 0101 \\
 \hline
 \text{1 1011 1110}
 \]
 \[
 \begin{array}{c}
 \text{E9} \\
 \text{D5} \\
 \hline
 \text{1BE}
 \]
 \[
 \begin{array}{c}
 \text{1011 1110} \\
 \hline
 \text{BE}
 \end{array}
 \]
 \]
TAdd Overflow

- **Functionality**
 - True sum requires $w+1$ bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

- **True Sum**

<table>
<thead>
<tr>
<th>TAdd Result</th>
<th>True Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>011...1</td>
<td>2^w-1</td>
</tr>
<tr>
<td>000...0</td>
<td>0</td>
</tr>
<tr>
<td>100...0</td>
<td>-2^w</td>
</tr>
<tr>
<td>111...1</td>
<td>2^w-1-1</td>
</tr>
</tbody>
</table>

- **TAdd Result**

<table>
<thead>
<tr>
<th>TAdd Result</th>
<th>True Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>011...1</td>
<td>2^w-1</td>
</tr>
<tr>
<td>000...0</td>
<td>0</td>
</tr>
<tr>
<td>100...0</td>
<td>-2^w</td>
</tr>
</tbody>
</table>

- **Overflow**
 - PosOver
 - NegOver
Visualizing 2’s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7
- **Wraps Around**
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Characterizing TAdd

Functionality
- True sum requires \(w+1 \) bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

\[
TAdd_w(u,v) = \begin{cases}
 u + v + 2^w & u + v < TMin_w \quad \text{(NegOver)} \\
 u + v & TMin_w \leq u + v \leq TMax_w \\
 u + v - 2^w & TMax_w < u + v \quad \text{(PosOver)}
\end{cases}
\]
Multiplication

- **Goal:** Computing Product of \(w \)-bit numbers \(x, y \)
 - Either signed or unsigned

- **But, exact results can be bigger than \(w \) bits**
 - Unsigned: up to \(2w \) bits
 - Result range: \(0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \)
 - Two’s complement min (negative): Up to \(2w-1 \) bits
 - Result range: \(x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1} \)
 - Two’s complement max (positive): Up to \(2w \) bits, but only for \((TMin_w)^2 \)
 - Result range: \(x \times y \leq (-2^{w-1})^2 = 2^{2w-2} \)

- **So, maintaining exact results...**
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: \(w \) bits

\[
\begin{array}{c}
\text{True Product: } 2^w \text{ bits} \\
\hline
\text{Discard } w \text{ bits: } w \text{ bits}
\end{array}
\]

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits

- **Implements Modular Arithmetic**

 \[
 \text{UMult}_w(u, v) = u \cdot v \mod 2^w
 \]

\[
\begin{array}{c}
\text{Example:} \\
\begin{array}{c}
1110 1001 \\
\times \quad 1101 0101
\end{array}
\end{array}
\]

\[
\begin{array}{c}
1100 0001 \\
1101 1101
\end{array}
\]

\[
\begin{array}{c}
1110 1001 \quad \text{E9} \quad 223 \\
\times \quad 1101 0101 \quad \times \quad \text{D5} \quad \times \quad 213
\end{array}
\]

\[
\begin{array}{c}
1100 0001 \quad 1101 1101 \quad \text{C1DD} \quad 47499
\end{array}
\]

\[
\begin{array}{c}
1101 1101 \quad \text{DD} \quad 221
\end{array}
\]
Signed Multiplication in C

Operands: \(w \) bits

\[
\begin{array}{c}
\text{u} \\
* \\
\text{v}
\end{array}
\]

True Product: \(2w \) bits

\[
\begin{array}{c}
\text{u} \\
\cdot \\
\text{v}
\end{array}
\]

Discard \(w \) bits: \(w \) bits

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

\[
\begin{array}{c}
1110 1001 \\
* \\
1101 0101
\end{array}
\]

\[
\begin{array}{c}
\text{E9} \\
* \\
\text{D5}
\end{array}
\]

\[
\begin{array}{c}
-23 \\
* \\
-43
\end{array}
\]

\[
\begin{array}{c}
0000 0011 \\
1101 1101
\end{array}
\]

\[
\begin{array}{c}
03DD \\
* \\
989
\end{array}
\]

\[
\begin{array}{c}
1101 1101 \\
* \\
DD
\end{array}
\]

\[
\begin{array}{c}
-35
\end{array}
\]

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition
Power-of-2 Multiply with Shift

- **Operation**
 - $u \ll k$ gives $u \times 2^k$
 - Both signed and unsigned

 Operands: w bits
 - $u \times 2^k$
 - $0 \cdots 0 \cdots 0$

 True Product: $w+k$ bits
 - $u \cdot 2^k$
 - $0 \cdots 0 \cdots 0$

 Discard k bits: w bits
 - UMult$_w(u, 2^k)$
 - TMult$_w(u, 2^k)$

- **Examples**
 - $u \ll 3 == u \times 8$
 - $(u \ll 5) - (u \ll 3) == u \times 24$
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Important Lesson:
Trust Your Compiler!
Multiplication

- **Goal:** Computing Product of \(w \)-bit numbers \(x, y \)
 - Either signed or unsigned

- **But, exact results can be bigger than \(w \) bits**
 - Unsigned: up to \(2w \) bits
 - Result range: \(0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \)
 - Two’s complement min (negative): Up to \(2w-1 \) bits
 - Result range: \(x \times y \geq (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1} \)
 - Two’s complement max (positive): Up to \(2w \) bits, but only for \((TMin_w)^2\)
 - Result range: \(x \times y \leq (-2^{w-1})^2 = 2^{2w-2} \)

- **So, maintaining exact results...**
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by “arbitrary precision” arithmetic packages
Unsigned Power-of-2 Divide with Shift

- **Quotient of Unsigned by Power of 2**
 - \(u >> k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

Division Computed Hex Binary

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Signed Power-of-2 Divide with Shift

- **Quotient of Signed by Power of 2**
 - \(x \gg k \) gives \(\lfloor x / 2^k \rfloor \)
 - Uses arithmetic shift
 - Rounds wrong direction when \(u < 0 \)

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y \gg 1)</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>(y \gg 4)</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>(y \gg 8)</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want \(\left\lfloor \frac{x}{2^k} \right\rfloor \) (Round Toward 0)
- Compute as \(\left\lfloor \frac{x+2^k-1}{2^k} \right\rfloor \)
 - In C: \(\left\lfloor \frac{x + (1<<k)-1}{2^k} \right\rfloor \) >> k
 - Biases dividend toward 0

Case 1: No rounding

Dividend:

\[
\begin{array}{c}
1 \ldots 0 \ldots 0 \\
0 \ldots 0 \ldots 1 \\
\end{array}
\]

Divisor:

\[
\begin{array}{c}
1 \ldots 1 \ldots 1 \\
0 \ldots 0 \ldots 0 \\
\end{array}
\]

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: x

$+2^k - 1$

Divisor: $\frac{x}{2^k}$

$\left\lceil \frac{x}{2^k} \right\rceil$

Incremented by 1

Biasing adds 1 to final result
Negation: Complement & Increment

- Negate through complement and increase
 \[\neg x + 1 = -x \]

- Example
 - Observation: \[\neg x + x = 1111...111 = -1 \]

- Table:

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(\neg x)</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>(\neg x + 1)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

\(x = 15213 \)
Complement & Increment Examples

$x = 0$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~ 0</td>
<td>-1</td>
<td>FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>$\sim 0+1$</td>
<td>0</td>
<td>00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>

$x = T\text{Min}$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>-32768</td>
<td>80</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>$\sim x$</td>
<td>32767</td>
<td>7F</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>$\sim x+1$</td>
<td>-32768</td>
<td>80</td>
<td>10000000 00000000</td>
</tr>
</tbody>
</table>

Canonical counter example
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- **Summary**

- Representations in memory, pointers, strings
Arithmetic: Basic Rules

- **Addition:**
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

- **Multiplication:**
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication mod 2^w
 - Signed: modified multiplication mod 2^w (result in proper range)
Why Should I Use Unsigned?

- *Don’t* use without understanding implications
 - Easy to make mistakes
    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
      a[i] += a[i+1];
    ```
 - Can be very subtle
    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
      . . .
    ```
Counting Down with Unsigned

- Proper way to use unsigned as loop index

  ```c
  unsigned i;
  for (i = cnt-2; i < cnt; i--)
     a[i] += a[i+1];
  ```

- See Robert Seacord, *Secure Coding in C and C++*
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0 - 1 \rightarrow UMax$

- Even better

  ```c
  size_t i;
  for (i = cnt-2; i < cnt; i--)
     a[i] += a[i+1];
  ```
 - Data type `size_t` defined as unsigned value with length = word size
Why Should I Use Unsigned? (cont.)

- **Do Use When Performing Modular Arithmetic**
 - Multiprecision arithmetic

- **Do Use When Using Bits to Represent Sets**
 - Logical right shift, no sign extension

- **Do Use In System Programming**
 - Bit masks, device commands,...
Quiz Time!

Check out:

https://canvas.cmu.edu/courses/13182
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it’s not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address

- Note: system provides private address spaces to each “process”
 - Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others
Machine Words

- Any given computer has a “Word Size”
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2^{32} bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That’s 18.4 X 10^{18}
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

- **Addresses Specify Byte Locations**
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Example Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Typical 64-bit</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?

- Conventions
 - Big Endian: Sun (Oracle SPARC), PPC Mac, *Internet*
 - Least significant byte has highest address
 - Little Endian: *x86*, ARM processors running Android, iOS, and Linux
 - Least significant byte has lowest address
Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

Big Endian

```
0x01 0x23 0x45 0x67
```

Little Endian

```
0x67 0x45 0x23 0x01
```
Representing Integers

\[\text{int } A = 15213; \]

\[\text{long int } C = 15213; \]

\[\text{int } B = -15213; \]

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

Two’s complement representation
Examining Data Representations

- **Code to Print Byte Representation of Data**
 - Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- `%p`: Print pointer
- `%x`: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;
0x7ffffff7f1dbc 6d
0x7ffffff7f1dbd 3b
0x7ffffff7f1dbe 00
0x7ffffff7f1dbf 00
```
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

Different compilers & machines assign different locations to objects

Even get different results each time run program
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30 + i
 - *man ascii for code table*
 - String should be null-terminated
 - Final character = 0

- **Compatibility**
 - Byte ordering not an issue

```c
char S[6] = "18213";
```
Reading Byte-Reversed Listings

- **Disassembly**
 - Text representation of binary machine code
 - Generated by program that reads the machine code

- **Example Fragment**

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab, %ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00</td>
<td>cmpl $0x0, 0x28 (%ebx)</td>
</tr>
</tbody>
</table>

- **Deciphering Numbers**
 - **Value:** 0x12ab
 - **Pad to 32 bits:** 0x000012ab
 - **Split into bytes:** 00 00 12 ab
 - **Reverse:** ab 12 00 00
Integer C Puzzles

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```

- `x < 0` \(\Rightarrow (x*2) < 0\)
- `ux >= 0`
- `x & 7 == 7` \(\Rightarrow (x<<30) < 0\)
- `ux > -1`
- `x > y` \(\Rightarrow -x < -y\)
- `x * x >= 0`
- `x > 0 && y > 0` \(\Rightarrow x + y > 0\)
- `x >= 0` \(\Rightarrow -x <= 0\)
- `x <= 0` \(\Rightarrow -x >= 0\)
- `(x|-x)>>31 == -1`
- `ux >> 3 == ux/8`
- `x >> 3 == x/8`
- `x & (x-1) != 0`