Bits, Bytes, and Integers – Part 2

15-213/18-213/14-513/15-513/18-613: Introduction to Computer Systems
3rd Lecture, September 3, 2019
Assignment Announcements

- **Lab 0 available via course web page and Autolab.**
 - Due Thurs. Sept. 5, 11pm ET
 - No grace days
 - No late submissions
 - Just do it!

- **Lab 1 available tonight via Autolab**
 - Due Thurs, Sept. 12, 11pm ET
 - Read instructions carefully: writeup, bits.c, tests.c
 - Quirky software infrastructure
 - Based on lectures 2, 3, and 4 (CS:APP Chapter 2)
 - After today’s lecture you will know everything for the integer problems
 - Floating point covered Thursday Sept. 5
Summary From Last Lecture

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

Two’s Complement Examples (w = 5)

\[
\begin{align*}
-16 & = 1 & 1 & 1 & 1 & 1 \\
10 & = 0 & 1 & 0 & 1 & 0 \\
-10 & = 1 & 0 & 1 & 1 & 0 \\
\end{align*}
\]

\[
\begin{align*}
8 + 2 & = 10 \\
-16 + 4 + 2 & = -10 \\
\end{align*}
\]
Unsigned & Signed Numeric Values

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

Expression containing signed and unsigned int:

```
int is cast to unsigned
```
Sign Extension and Truncation

- **Sign Extension**

- **Truncation**
- Misunderstanding integers can lead to the end of the world as we know it!
- Thule (Qaanaaq), Greenland
- US DoD “Site J” Ballistic Missile Early Warning System (BMEWS)
- 10/5/60: world nearly ends
- Missile radar echo: 1/8s
- BMEWS reports: 75s echo(!)
- 1000s of objects reported
- NORAD alert level 5:
 - Immediate incoming nuclear attack!!!!
Kruschev was in NYC 10/5/60 (weird time to attack)
 - someone in Qaanaaq said “why not go check outside?”

“Missiles” were actually THE MOON RISING OVER NORWAY

Expected max distance: 3000 mi; Moon distance: .25M miles!

.25M miles % sizeof(distance) = 2200mi.

Overflow of distance nearly caused nuclear apocalypse!!
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary
Unsigned Addition

Operands: \(w \) bits

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

- **Standard Addition Function**
 - Ignores carry output

- **Implements Modular Arithmetic**
 \[s = \text{UAdd}_w(u, v) = u + v \mod 2^w \]

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>unsigned char</th>
<th>1110 1001</th>
<th>E9</th>
<th>223</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>1101 0101</td>
<td>+ D5</td>
<td>+ 213</td>
</tr>
<tr>
<td></td>
<td>1 1011 1110</td>
<td>1BE</td>
<td>446</td>
</tr>
<tr>
<td></td>
<td>1011 1110</td>
<td>BE</td>
<td>190</td>
</tr>
</tbody>
</table>
Visualizing (Mathematical) Integer Addition

- **Integer Addition**
 - 4-bit integers \(u \), \(v \)
 - Compute true sum \(\text{Add}_4(u, v) \)
 - Values increase linearly with \(u \) and \(v \)
 - Forms planar surface
Visualizing Unsigned Addition

- **Wraps Around**
 - If true sum ≥ 2^w
 - At most once

True Sum
- 2^{w+1}
- 2^w
- 0

Modular Sum

Overflow

$\text{Overflow}_{u,v} = \text{UAdd}_4(u, v)$
Two’s Complement Addition

Operands: w bits

u
\[\begin{array}{c} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \end{array} \]

$+ v$
\[\begin{array}{c} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \end{array} \]

True Sum: $w+1$ bits

$u + v$
\[\begin{array}{c} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \end{array} \]

Discard Carry: w bits

$\text{TAdd}_w(u, v)$
\[\begin{array}{c} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \end{array} \]

- **TAdd and UAdd have Identical Bit-Level Behavior**
 - Signed vs. unsigned addition in C:
    ```c
    int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v
    ```
 - Will give $s == t$
 \[
 \begin{array}{c}
 1110 1001 & E9 & -23 \\
 + 1101 0101 & + D5 & + -43 \\
 \hline
 1 1011 1110 & 1BE & -66 \\
 \hline
 1011 1110 & BE & -66
 \end{array}
 \]
TAdd Overflow

Functionality

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

<table>
<thead>
<tr>
<th>TAdd Result</th>
<th>True Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>011...1</td>
<td>2^w-1</td>
</tr>
<tr>
<td>000...0</td>
<td>0</td>
</tr>
<tr>
<td>100...0</td>
<td>-2^w</td>
</tr>
<tr>
<td>1011...1</td>
<td>2^w-1</td>
</tr>
<tr>
<td>1000...0</td>
<td>0</td>
</tr>
</tbody>
</table>

Overflow

- **TAdd Overflow**
- **PosOverflow**
- **NegOverflow**
Visualizing 2’s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps Around**
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Characterizing TAdd

- **Functionality**
 - True sum requires \(w+1 \) bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

\[
TAdd_w(u,v) = \begin{cases}
 u + v + 2^w & u + v < TMin_w \quad \text{(NegOver)} \\
 u + v & TMin_w \leq u + v \leq TMax_w \\
 u + v - 2^w & TMax_w < u + v \quad \text{(PosOver)}
\end{cases}
\]
Multiplication

- **Goal: Computing Product of** w-bit numbers x, y
 - Either signed or unsigned

- **But, exact results can be bigger than** w **bits**
 - Unsigned: up to $2w$ bits
 - Result range: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Two’s complement min (negative): Up to $2w-1$ bits
 - Result range: $x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$
 - Two’s complement max (positive): Up to $2w$ bits, but only for $(TMin)_w^2$
 - Result range: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$

- **So, maintaining exact results...**
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: w bits

True Product: $2w$ bits

Discard w bits: w bits

- **Standard Multiplication Function**
 - Ignores high order w bits

- **Implements Modular Arithmetic**
 $$UMult_w(u, v) = u \cdot v \mod 2^w$$

<table>
<thead>
<tr>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110 1001</td>
<td>E9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$u \cdot v$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100 0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$UMult_w(u, v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101 1101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^w</th>
</tr>
</thead>
<tbody>
<tr>
<td>233</td>
</tr>
</tbody>
</table>

| $1110 1001$ | $E9$ | 233 |

$*$

| $1101 0101$ | $D5$ | 213 |

$*$

| $1100 0001$ | $C1DD$ | 49629 |

| $1101 1101$ | DD | 221 |

Signed Multiplication in C

Operands: \(w \) bits

\[
\begin{array}{c}
\text{\(u \)} \\
\times \\
\text{\(v \)}
\end{array}
\]

True Product: \(2^w \) bits

\[
\begin{array}{c}
\text{\(u \cdot v \)}
\end{array}
\]

Discard \(w \) bits: \(w \) bits

Standard Multiplication Function

- Ignores high order \(w \) bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

\[
\begin{array}{c}
1110 1001 \\
\times \\
1101 0101 \\
\hline
0000 0011 1101 1101 \\
\text{(1101 1101)} \\
03DD \\
\hline
DD \\
-35
\end{array}
\]

\[
\begin{array}{c}
\text{E9} \\
\times \\
\text{D5} \\
\hline
\text{989}
\end{array}
\]

\[
\begin{array}{c}
\text{-23} \\
\times \\
\text{-43}
\end{array}
\]
Power-of-2 Multiply with Shift

Operation
- $u << k$ gives $u * 2^k$
- Both signed and unsigned

Operands: w bits

![Operand Representation]

True Product: $w+k$ bits

![Product Representation]

Discard k bits: w bits

![Discarded Bits Representation]

Examples
- $u << 3 == u * 8$
- $(u << 5) - (u << 3) == u * 24$
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

![Diagram showing division of an unsigned number by a power of 2 using logical shift]

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Signed Power-of-2 Divide with Shift

- **Quotient of Signed by Power of 2**
 - \(x >> k \) gives \(\lfloor x / 2^k \rfloor \)
 - Uses arithmetic shift
 - Rounds wrong direction when \(x < 0 \)

![Binary Point Diagram]

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(x >> 1)</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>(x >> 4)</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>(x >> 8)</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want \(\left\lfloor \frac{x}{2^k} \right\rfloor \) (Round Toward 0)
- Compute as \(\left\lfloor \frac{x+2^k-1}{2^k} \right\rfloor \)
 - In C: \((x + (1<<k) - 1) >> k\)
 - Biases dividend toward 0

Case 1: No rounding

Dividend:

<table>
<thead>
<tr>
<th>u</th>
<th>•••</th>
<th>0</th>
<th>•••</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2^k - 1</td>
<td>•••</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>•••</td>
</tr>
</tbody>
</table>

Divisor:

| 2^k | ••• | 0 | 1 | 0 | ••• | 0 | 0 |

\[\left\lfloor \frac{u}{2^k} \right\rfloor \]

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: $x + 2^k - 1$

$\underbrace{1 \cdot \cdot \cdot}_{k}$

$\underbrace{0 \cdot \cdot \cdot 001 \cdot \cdot \cdot 11}_{\text{Incremented by 1}}$

$\underbrace{1 \cdot \cdot \cdot 111 \cdot \cdot \cdot}_{\text{Incremented by 1}}$

Divisor: $\left\lfloor \frac{x}{2^k} \right\rfloor$

$\underbrace{0 \cdot \cdot \cdot 010 \cdot \cdot \cdot 00}_{\text{Incremented by 1}}$

$\underbrace{1 \cdot \cdot \cdot 111 \cdot \cdot \cdot}_{\text{Biasing adds 1 to final result}}$

Binary Point

$\underbrace{\cdot \cdot \cdot}$

$\underbrace{\cdot \cdot \cdot}$
Negation: Complement & Increment

- Negate through complement and increase
 \[\neg x + 1 = -x \]

- Example
 - Observation: \[\neg x + x = 111\ldots111 = -1 \]

<table>
<thead>
<tr>
<th>x</th>
<th>100111101</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>[\neg x] 01100010</td>
</tr>
<tr>
<td>-1</td>
<td>11111111</td>
</tr>
</tbody>
</table>

\[x = 15213 \]

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>\neg x</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>\neg x+1</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>
Complement & Increment Examples

x = 0

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~0</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>~0+1</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>

x = TMin

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>~x</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>~x+1</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
</tbody>
</table>

Canonical counter example
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
Arithmetic: Basic Rules

- **Addition:**
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

- **Multiplication:**
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication mod 2^w
 - Signed: modified multiplication mod 2^w (result in proper range)
Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it’s not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address

- Note: system provides private address spaces to each “process”
 - Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others
Machine Words

- Any given computer has a “Word Size”
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2^{32} bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That’s 18.4 X 10^{18}
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

- **Addresses Specify Byte Locations**
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

<table>
<thead>
<tr>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td>Addr = 0000</td>
<td></td>
<td>0000</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td></td>
<td>0001</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0002</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0003</td>
</tr>
<tr>
<td></td>
<td>Addr = 0000</td>
<td></td>
<td>0004</td>
</tr>
<tr>
<td></td>
<td>Addr = 0008</td>
<td></td>
<td>0005</td>
</tr>
<tr>
<td></td>
<td>Addr = 0012</td>
<td></td>
<td>0006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0015</td>
</tr>
</tbody>
</table>
Example Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Typical 64-bit</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?

Conventions

- Big Endian: Sun (Oracle SPARC), PPC Mac, *Internet*
 - Least significant byte has highest address
- Little Endian: *x86*, ARM processors running Android, iOS, and Linux
 - Least significant byte has lowest address
Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
Representing Integers

```
int A = 15213;
long int C = 15213;
```

```
int B = -15213;
```

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

IA32, x86-64

<table>
<thead>
<tr>
<th></th>
<th>IA32</th>
<th>x86-64</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>6D</td>
<td>00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>00</td>
<td>3B</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>6D</td>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>

IA32

<table>
<thead>
<tr>
<th></th>
<th>IA32</th>
<th>x86-64</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>FF</td>
<td>FF</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>FF</td>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>FF</td>
<td>FF</td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>

Two’s complement representation
Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- %p: Print pointer
- %x: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```plaintext
int a = 15213;
0x7ffffff7f71dbc 6d
0x7ffffff7f71dbd 3b
0x7ffffff7f71dbe 00
0x7ffffff7f71dbf 00
```
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th></th>
<th>Sun</th>
<th>IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EF</td>
<td>AC</td>
<td>3C</td>
</tr>
<tr>
<td></td>
<td>FF</td>
<td>28</td>
<td>1B</td>
</tr>
<tr>
<td></td>
<td>FB</td>
<td>F5</td>
<td>FE</td>
</tr>
<tr>
<td></td>
<td>2C</td>
<td>FF</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00</td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects

Even get different results each time run program
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0

- **Compatibility**
 - Byte ordering not an issue

```c
char S[6] = "18213";
```
Reading Byte-Reversed Listings

- **Disassembly**
 - Text representation of binary machine code
 - Generated by program that reads the machine code

- **Example Fragment**

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

- **Deciphering Numbers**
 - Value: 0x12ab
 - Pad to 32 bits: 0x000012ab
 - Split into bytes: 00 00 12 ab
 - Reverse: ab 12 00 00
Summary

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary