Bits, Bytes and Integers – Part 1

15-213/18-213/14-513/15-513: Introduction to Computer Systems
2nd Lecture, Jan. 17, 2019
Announcements

- Recitations are on Mondays. Recitation #1 is Jan 28.

- Linux Boot Camp Sunday evening 7pm, Rashid Auditorium

- Lab 0 is now available via course web page and Autolab.
 - Due Tue Jan. 22, 11:59pm
 - No grace days!
 - No late submissions!
 - Just do it!

- Problem Set 1 due Jan 20, 11:59pm
 - available via course webpage

- Do not email the course staff for logistics.
 - You will get better help faster if you use Piazza
Logistics

■ Waitlist
 ▪ 15-213: Mary Widom (marwidom@cs.cmu.edu)
 ▪ 18-213: ECE Academic services
 ece-asc@andrew.cmu.edu
 ▪ 15-513: Mary Widom (marwidom@cs.cmu.edu)
 ▪ Please don’t contact the instructors with waitlist questions.

■ Autolab + Canvas Accounts
 ▪ Doing our best to get things sorted for all 400+ of you
 ▪ We will have all accounting problems fixed ASAP
 ▪ There are pinned threads on Piazza for guidance
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires
For example, can count in binary

- **Base 2 Number Representation**
 - Represent 15213_{10} as 11101101101101_2
 - Represent 1.20_{10} as $1.0011001100110011[0011]..._2$
 - Represent 1.5213×10^4 as $1.11011011011012 \times 2^{13}$
Encoding Byte Values

- **Byte = 8 bits**
 - Binary: 00000000\(_2\) to 11111111\(_2\)
 - Decimal: 0\(_{10}\) to 255\(_{10}\)
 - Hexadecimal: 00\(_{16}\) to FF\(_{16}\)
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B\(_{16}\) in C as
 - 0xFA1D37B
 - 0xfa1d37b

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>

15213: 0011 1011 0110 1101

3 B 6 D
Example Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Typical 64-bit</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And
- \(A \& B = 1 \) when both \(A=1 \) and \(B=1 \)

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Or
- \(A | B = 1 \) when either \(A=1 \) or \(B=1 \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not
- \(\sim A = 1 \) when \(A=0 \)

<table>
<thead>
<tr>
<th>\sim</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)
- \(A \& B = 1 \) when either \(A=1 \) or \(B=1 \), but not both

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
General Boolean Algebras

- **Operate on Bit Vectors**
 - Operations applied bitwise

 \[
 \begin{array}{ccc}
 01101001 & 01101001 & 01101001 \\
 \& 01010101 & | 01010101 & ^ 01010101 & \sim 01010101 \\
 01000001 & 01111101 & 00111100 & 10101010
 \end{array}
 \]

- **All of the Properties of Boolean Algebra Apply**
Example: Representing & Manipulating Sets

Representation

- Width \(w \) bit vector represents subsets of \{0, ..., w−1\}
- \(a_j = 1 \) if \(j \in A \)

- 01101001 \{ 0, 3, 5, 6 \}
- 76543210

- 01010101 \{ 0, 2, 4, 6 \}
- 76543210

Operations

- & Intersection 01000001 \{ 0, 6 \}
- | Union 01111101 \{ 0, 2, 3, 4, 5, 6 \}
- ^ Symmetric difference 00111100 \{ 2, 3, 4, 5 \}
- ~ Complement 10101010 \{ 1, 3, 5, 7 \}
Bit-Level Operations in C

- **Operations & , | , ~ , ^ Available in C**
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- **Examples (Char data type)**
 - ~0x41 →
 - ~0x00 →
 - 0x69 & 0x55 →
 - 0x69 | 0x55 →
Bit-Level Operations in C

- **Operations &,, |,, ~,, ^ Available in C**
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- **Examples (Char data type)**
 - ~0x41 → 0xBE
 - ~0100 0001₂ → 1011 1110₂
 - ~0x00 → 0xFF
 - ~0000 0000₂ → 1111 1111₂
 - 0x69 & 0x55 → 0x41
 - 0110 1001₂ & 0101 0101₂ → 0100 0001₂
 - 0x69 | 0x55 → 0x7D
 - 0110 1001₂ | 0101 0101₂ → 0111 1101₂
Contrast: Logic Operations in C

- **Contrast to Bit-Level Operators**
 - Logic Operations: &&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination
- **Examples (char data type)**
 - !0x41 → 0x00
 - !0x00 → 0x01
 - !!0x41 → 0x01
 - 0x69 && 0x55 → 0x01
 - 0x69 || 0x55 → 0x01
 - p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)... one of the more common oopsies in C programming
Shift Operations

- **Left Shift:** $x << y$
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0’s on right
- **Right Shift:** $x >> y$
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on left

- **Undefined Behavior**
 - Shift amount < 0 or \geq word size

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<< 3$</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. $>> 2$</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. $>> 2$</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<< 3$</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. $>> 2$</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. $>> 2$</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Representations in memory, pointers, strings

Summary
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- C does not mandate using two’s complement
 - But, most machines do, and we will assume so

- C short 2 bytes long

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

- Sign Bit
 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Two-complement: Simple Example

\[
\begin{array}{ccccc}
-16 & 8 & 4 & 2 & 1 \\
10 & = & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\quad 8+2 = 10
\]

\[
\begin{array}{ccccc}
-16 & 8 & 4 & 2 & 1 \\
-10 & = & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\quad -16+4+2 = -10
\]
Two-complement Encoding Example (Cont.)

\[x = 15213: \quad 00111011 \ 01101101 \]
\[y = -15213: \quad 11000100 \ 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum

<table>
<thead>
<tr>
<th></th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td>15213</td>
<td>-15213</td>
</tr>
</tbody>
</table>
Numeric Ranges

Unsigned Values
- \(UMin = 0 \)
 - 000...0
- \(UMax = 2^w - 1 \)
 - 111...1

Two’s Complement Values
- \(TMin = -2^{w-1} \)
 - 100...0
- \(TMax = 2^{w-1} - 1 \)
 - 011...1
- Minus 1
 - 111...1

Values for \(W = 16 \)

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>TMax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,807</td>
</tr>
</tbody>
</table>

Observations

- $|TMin| = Tmax + 1$
 - Asymmetric range
- $UMax = 2 \times Tmax + 1$

C Programming

- `#include <limits.h>`
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform specific
Unsigned & Signed Numeric Values

Equivalence
- Same encodings for nonnegative values

Uniqueness
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

Can Invert Mappings
- \(U2B(x) = B2U^{-1}(x) \)
 - Bit pattern for unsigned integer
- \(T2B(x) = B2T^{-1}(x) \)
 - Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>(x)</th>
<th>(B2U(x))</th>
<th>(B2T(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Quiz Time!

Check out:

https://canvas.cmu.edu/courses/8555
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Representations in memory, pointers, strings
Mapping Between Signed & Unsigned

Two’s Complement

Unsigned

Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret
Mapping Signed \leftrightarrow Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

The mapping is done by treating the first bit as +/− and the rest as a positive unsigned number.
Relation between Signed & Unsigned

Two’s Complement

\[x \rightarrow \text{T2B} \rightarrow \text{T2U} \rightarrow \text{B2U} \rightarrow ux \]

Maintain Same Bit Pattern

\[\begin{array}{c}
| \text{w-1} | 0 \\
\hline
\text{ux} & + & + & + & \ldots & + & + & + \\
\text{x} & - & + & + & \ldots & + & + & + \\
\end{array} \]

Large negative weight

becomes

Large positive weight
Conversion Visualized

- **2’s Comp. → Unsigned**
 - Ordering Inversion
 - Negative → Big Positive
Signed vs. Unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix
 - $0U$, $4294967259U$

- **Casting**
 - Explicit casting between signed & unsigned same as U2T and T2U
    ```c
    int tx, ty;
    unsigned ux, uy;
    tx = (int) ux;
    uy = (unsigned) ty;
    ```
 - Implicit casting also occurs via assignments and procedure calls
    ```c
    tx = ux;  
    int fun(unsigned u);  
    uy = ty;  
    uy = fun(tx);  
    ```
Casting Surprises

Expression Evaluation
- If there is a mix of unsigned and signed in single expression, **signed values implicitly cast to unsigned**
- Including comparison operations `<`, `>`, `==`, `<=`, `>=`
- Examples for $W = 32$: $\text{TMIN} = -2,147,483,648$, $\text{TMAX} = 2,147,483,647$

<table>
<thead>
<tr>
<th>Constant$_1$</th>
<th>Constant$_2$</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483647-1</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483647-1</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Summary

Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w

Expression containing signed and unsigned int
 - int is cast to unsigned!!
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Representations in memory, pointers, strings
Sign Extension

- Task:
 - Given a \(w \)-bit signed integer \(x \)
 - Convert it to a \(w+k \)-bit integer with the same value

- Rule:
 - Make \(k \) copies of the sign bit:
 - \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0 \)

\[k \text{ copies of MSB} \]
Sign Extension: Simple Example

Positive number

\[
\begin{array}{cccccc}
-16 & 8 & 4 & 2 & 1 \\
0 & 1 & 0 & 1 & 0 \\
\end{array}
\]

Negative number

\[
\begin{array}{cccccc}
-16 & 8 & 4 & 2 & 1 \\
1 & 0 & 1 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
-32 & 16 & 8 & 4 & 2 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
-32 & 16 & 8 & 4 & 2 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\]

Positive number

\[
\begin{array}{cccccc}
-16 & 8 & 4 & 2 & 1 \\
0 & 1 & 0 & 1 & 0 \\
\end{array}
\]

Negative number

\[
\begin{array}{cccccc}
-16 & 8 & 4 & 2 & 1 \\
1 & 0 & 1 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
-32 & 16 & 8 & 4 & 2 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
-32 & 16 & 8 & 4 & 2 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\]
Larger Sign Extension Example

```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Truncation

■ Task:
 - Given $k+w$-bit signed or unsigned integer X
 - Convert it to w-bit integer X'
 - (with same value for “small enough” X)

■ Rule:
 - Drop top k bits:
 - $X' = x_{w-1}, x_{w-2}, ..., x_0$
Truncation: Simple Example

No sign change

\[
\begin{array}{c|ccccc}
 2 &=& -16 & 8 & 4 & 2 & 1 \\
 2 &=& 0 & 0 & 0 & 1 & 0 \\
-6 &=& -16 & 8 & 4 & 2 & 1 \\
-6 &=& 1 & 1 & 0 & 1 & 0 \\
\end{array}
\]

\[2 \mod 16 = 2\]

Sign change

\[
\begin{array}{c|ccccc}
 10 &=& -16 & 8 & 4 & 2 & 1 \\
 10 &=& 0 & 1 & 0 & 1 & 0 \\
-6 &=& -16 & 8 & 4 & 2 & 1 \\
-10 &=& 1 & 0 & 1 & 1 & 0 \\
\end{array}
\]

\[10 \mod 16 = 10U \mod 16 = 10U = -6\]

\[
\begin{array}{c|ccccc}
-6 &=& -16 & 8 & 4 & 2 & 1 \\
-6 &=& 1 & 0 & 1 & 0 \\
\end{array}
\]

\[-6 \mod 16 = 26U \mod 16 = 10U = -6\]
Summary: Expanding, Truncating: Basic Rules

- **Expanding (e.g., short int to int)**
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result

- **Truncating (e.g., unsigned to unsigned short)**
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small (in magnitude) numbers yields expected behavior
Summary of Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary