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Bits, Bytes, and Integers

¢ Representing information as bits CSAPP 2.1
¢ Bit-level manipulations
¢ Integers CSAPP 2.2
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating

 Addition, negation, multiplication, shifting CSAPP 2.3
¢ Byte Ordering CSAPP 2.1.3
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Analog Computers
¢ Before digital computers there were analog computers. 

¢ Consider a couple of simple analog computers:
 A simple circuit can allow one to adjust voltages using variable 

resistors and measure the output using a volt meter:

 A simple network of adjustable parallel resistors can allow one to 
find the average of the inputs. 

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-
Summer-Calculator.phtml

https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-
without-a-transistor-op-amp-and-any-external-supply

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-without-a-transistor-op-amp-and-any-external-supply
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Needing Less Accuracy+Precision is Easier
¢ We don’t try to measure exactly

 We just ask, is it high enough to be “On”, or
 Is it low enough to be “Off”. 

¢ We have two states, so we have a binary, or 2-ary, system.
 We represent these states as 0 and 1

¢ Now we can easily interpret, communicate, and duplicate signals well enough to know 
what they mean. 

0.0V
0.2V

0.9V
1.1V

0 1 0
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Binary Representation
¢ Binary representation leads to a simple binary, i.e. base-2, 

numbering system
 0 represents 0
 1 represents 1
 Each “place” represents a power of two, exactly as each place in our 

usual “base 10”, 10-ary numbering system represents a power of ten

¢ By encoding/interpreting sets of bits in various ways, we can 
represent different things:
 Operations to be executed by the processor, numbers, enumerable 

things, such as text characters

¢ As long as we can assign it to a discrete number, we can 
represent it in binary 
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Binary Representation:
Simple Numbers
¢ For example, we can count in binary, a base-2 numbering 

system
 000, 001, 010, 011, 100, 101, 110, 111, …

 000 = 0*22 +  0*21  +  0*20 =  0 (in decimal)
 001 = 0*22 +  0*21  +  1*20 =  1 (in decimal)
 010 = 0*22 +  1*21  +  0*20 =  2 (in decimal)
 011 = 0*22 +  1*21  +  1*20 =  3 (in decimal)
 Etc.

¢ For reference, consider some base-10 examples:
 000 = 0*102 +  0*101  +  0*100

 001 = 0*102 +  0*101  +  1*100

 357 = 3*102 +  5*101  +  7*100
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Hexadecimal and Octal

¢ Writing out numbers in binary takes too many digits 

¢ We want a way to represent numbers more densely such that 
fewer digits are required
 But also such that it is easy to get at the bits that we want

¢ Any power-of-two base provides this property
 Octal, e.g. base-8, and hexadecimal, e.g. base-16 are the closest to our 

familiar base-10.
 Each has been used by “computer people” over time
 Hexadecimal is often preferred because it is denser. 
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Hexadecimal
¢ Hexadecimal 0016 to FF16
 Base 16 number representation
 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

¢ Consider 1A2B in Hexadecimal:
 1*163 +    A*162 +   2*161 +   B*160

 1*163 +    10*162 +   2*161 +   11*160 = 6699 (decimal)

 The C Language prefixes hexadecimal numbers with “0x”
so they aren’t confused with decimal numbers

 Write FA1D37B16 in C as
 0xFA1D37B
 0xfa1d37b 

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

15213: 0011 1011 0110 1101

3 B 6 D
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Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

¢ Byte Ordering
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Boolean Algebra
¢ Developed by George Boole in 19th Century

 Algebraic representation of logic
 Encode “True” as 1 and “False” as 0

And
 A&B = 1 when both A=1 and B=1

Or
 A|B = 1 when either A=1 or B=1

Not
 ~A = 1 when A=0

Exclusive-Or (Xor)
 A^B = 1 when either A=1 or B=1, but not both
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General Boolean Algebras

¢ Operate on Bit Vectors
 Operations applied bitwise

¢ All of the Properties of Boolean Algebra Apply

01101001
& 01010101
01000001

01101001
| 01010101
01111101

01101001
^ 01010101
00111100

~ 01010101
1010101001000001 01111101 00111100 10101010
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Example: Representing & Manipulating Sets

¢ Representation
 Width w bit vector represents subsets of {0, …, w–1}
 aj = 1 if j ∈ A

 01101001 { 0, 3, 5, 6 }
 76543210

 01010101 { 0, 2, 4, 6 }
 76543210

¢ Operations
 &    Intersection 01000001 { 0, 6 }
 |     Union 01111101 { 0, 2, 3, 4, 5, 6 }
 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
 ~ Complement 10101010 { 1, 3, 5, 7 }
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Bit-Level Operations in C

¢ Operations &,  |,  ~,  ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

¢ Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102
 ~0x00 → 0xFF

 ~000000002 → 111111112
 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012
 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary
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Bit-Level Operations in C

¢ Operations &,  |,  ~,  ^ Available in C
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 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

¢ Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102
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1 1 0001
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D 13 1101
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Decim
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¢ Operations &,  |,  ~,  ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

¢ Examples (Char data type)
 ~0x41 → 1011 11100xBE~010000012 → 101111102
 ~0x00 → 1111 11110xF~000000002 → 1111112
 0x69 & 0x55:           0x69 | 0x55: 

0110 1001 0110 1001 

& 0101 0101 | 0101 0101 
----------------- -----------------

0100 0001011010 0111 1101011010012 012 & 
010101012 → 010000012
0x7D

 011010012 | 010101012 → 011111012

Bit-Level Operations in C

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary
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Contrast: Logic Operations in C

¢ Contrast to Bit-Level Operators
 Logic Operations: &&, ||, !

 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination

¢ Examples (char data type)
 !0x41 → 0x00
 !0x00 → 0x01
 !!0x41→ 0x01

 0x69 && 0x55 → 0x01
 0x69 || 0x55 → 0x01
 p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)… 
Super common C programming pitfall!
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Shift Operations

¢ Left Shift: x << y
 Shift bit-vector x left y positions

– Throw away extra bits on left
 Fill with 0’s on right

¢ Right Shift: x >> y
 Shift bit-vector x right y positions

 Throw away extra bits on right
 Logical shift

 Fill with 0’s on left
 Arithmetic shift

 Replicate most significant bit on left

¢ Undefined Behavior
 Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000
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Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting



21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Binary Number Lines
¢ In binary, the number of bits in the data type size 

determines the number of points on the number line. 
 We can assign the points any meaning we’d like

¢ Consider the following examples:
 1 bit number line

0                                                  1
 2 bit number line

00            01              10             11                 
 3 bit number line

000  001 010  011  100   101  110  111     
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Some Purely Imaginary Examples

¢ 3 bit number line

-1/16       -1/8     -1/4         0           1/16      1/8        1/4          1/2

0             1         2            3              4             5           6             7

-4          -3        -2            -1             0            1            2             3

A            B          C            D             E             F           G             H
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Overflow

¢ Let’s consider a simple 3 digit number line:

0              1          2             3            4            5            6   7

000        001       010        011       100         101      110          111

¢ What happens if we add 1 to 7?
 In other words, what happens if we add 1 to 111?

¢ 111+ 001 = 1 000
 But, we only get 3 bits – so we lose the leading 1. 
 This is called overflow

¢ The result is 000
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Modulus Arithmetic

¢ Let’s explore this idea of overflow some more
 111 + 001 = 1 000 = 000
 111 + 010  = 1 001 = 001
 111 + 011 =  1 010  = 010
 111 + 100 =  1 011  = 011
 …
 111 + 110  = 1 101 = 101
 111 + 111 = 1 110 =  110

¢ So, arithmetic “wraps around” when it gets “too positive”
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Unsigned and Non-Negative Integers

¢ We’ll use the term “ints” to mean the finite set of integer 
numbers that we can represent on a number line enumerated by 
some fixed number of bits, i.e. bit width. 

¢ We normally represent unsigned and non-negative int using 
simple binary as we have already discussed
 An “unsigned” int is any int on a number line, e.g. of a data type, that 

doesn’t contain any negative numbers
 A non-negative number is a number greater than or equal to (>=) 0 on a 

number line, e.g. of a data type, that does contain negative numbers
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How represent negative Numbers?
¢ We could use the leading bit as a sign bit:
 0 means non-negative
 1 means negative

000        001      010        011         100        101       110        111

0            1           2            3              -0          -1            -2          -3

¢ This has some benefits
 It lets us represent negative and non-negative numbers
 0 represents 0

¢ It also has some drawbacks
 There is a -0, which is the same as 0, except that it is different
 How to add such numbers 1 + -1 should equal 0

 But, by simple math, 001 + 101 = 110, which is -2?
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A Magic Trick!
¢ Let’s just start with three ideas:
 1 should be represented as 1
 -1 + 1 = 0
 We want addition to work in the familiar way, with simple rules.

¢ We want a situation where “-1” + 1 = 0

¢ Consider a 3 bit number:
 001 + “-1” = 0
 001 + 111 = 0 

 Remember 001 + 111 = 1 000, and the leading one is lost to 
overflow.

¢ “-1” = 111
 Yep!
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Negative Numbers

¢ Well, if 111 is -1, what is -2? 
 -1   - 1
 111 – 001 = 110

¢ Does that really work?
 If it does -2 + 2 = 0
 110  +  010 = 1 000  = 000

¢ -2 + 5 should be 3, right? 
 110 + 101 =  1 011  =  011
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Finding –x the easy way

¢ Given a non-negative number in binary, e.g. 5, represented 
with a fixed bit width, e.g. 4
 0101

¢ We can find its negative by flipping each bit and adding 1
 0101 This is 5
 1010 This is the “ones complement of 5”, e.g. 5 with bits flipped
 1011          This is the “twos complement of 5”, e.g. 5 with the bits 

flipped and 1 added
 0101  +  1011 =  1 0000 = 0000
 -x = ~x+1

¢ Because of the fixed width, the “two’s complement” of a 
number can be used as its negative.  
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Why Does This Work?
¢ Consider any number and its (ones) complement:
 0101
 1010

¢ They are called complements because complementary bits 
are set. As a result, if they are added, all bits are necessarily 
set:
 0101 + 1010 = 1111

¢ Adding 1 to the sum of a number and its complement 
necessarily results in a 0 due to overflow
 (0101 + 1010) + 1   =   1111 + 1   = 1 0000  =  0000

¢ And if x + y = 0, y must equal –x
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Why Does This Work? Cont.

¢ If x + y = 0
 y must equal –x

¢ So if x + (Complement(x) + 1) = 0
 Complement(x) + 1 must equal –x

¢ Another way of looking at it:
 if x + (Complement(x) + 1) = 0
 x + Complement(x) = -1
 x = -1 - Complement(x)
 -x = 1 + Complement(x)
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Visualizing Two’s Complement

¢ Numbers “wrap around” with -1 at the very end

000        001      010        011         100        101       110        111

0            1           2            3              -4          -3            -2          -1

¢ A few things to note:
 All negative numbers start with a ”1”

 E.g. 100 is “-4”
 You can view the leading “1” as introducing a “-4”

 E.g.  101 = 1*-4+0*2+1*1= -3 
 But  010 = 0*-4+1*2+0*1 = 2

 -4 is missing a positive partner
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Complement & Increment Examples

 Decimal Hex Binary 
x -32768 80 00 10000000 00000000 
~x 32767 7F FF 01111111 11111111 
~x+1 -32768 80 00 10000000 00000000 
 

x = Tmin (The most negative two’s complement number)

 Decimal Hex Binary 
0 0 00 00 00000000 00000000 
~0 -1 FF FF 11111111 11111111 
~0+1 0 00 00 00000000 00000000 
 

x = 0

Canonical counter example
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Encoding Integers: Dense Form

short int x =  15213;
short int y = -15213;

¢ C does not mandate using two’s complement
 But, most machines do, and we will assume so

¢ C short (2 bytes long)

¢ Sign Bit
 For 2’s complement, most significant bit indicates sign

 0 for nonnegative, 1 for negative

B2T (X ) = -xw-1 ×2
w-1 + xi ×2

i

i=0

w-2

åB2U(X ) = xi ×2
i

i=0

w-1

å
Unsigned Two’s Complement

Sign 
Bit

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 
y -15213 C4 93 11000100 10010011 
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Numeric Ranges
¢ Unsigned Values
 UMin = 0

000…0
 UMax = 2w – 1

111…1

¢ Two’s Complement Values
 TMin = –2w–1

100…0
 TMax = 2w–1 – 1

011…1

 Minus 1
111…1

 Decimal Hex Binary 
UMax 65535 FF FF 11111111 11111111 
TMax 32767 7F FF 01111111 11111111 
TMin -32768 80 00 10000000 00000000 
-1 -1 FF FF 11111111 11111111 
0 0 00 00 00000000 00000000 
 

Values for W = 16
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Quiz Time!

Check out:

https://canvas.cmu.edu/courses/39547/quizzes/118137
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Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

¢ Byte Ordering
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Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16
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+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X
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0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement 
Range

Unsigned
Range

Conversion Visualized
¢ 2’s Comp. ® Unsigned
 Ordering Inversion
 Negative ® Big Positive
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Signed vs. Unsigned in C
¢ Constants
 By default are considered to be signed integers
 Unsigned if have “U” as suffix

0U, 4294967259U

¢ Casting
 Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;
uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls
tx = ux;                   int fun(unsigned u);
uy = ty;                   uy = fun(tx);
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0 0U == unsigned
-1 0 < signed

-1 0U > unsigned
2147483647 -2147483648 > signed

2147483647U -2147483648 < unsigned
-1 -2 > signed

(unsigned) -1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Casting Surprises
¢ Expression Evaluation

 If there is a mix of unsigned and signed in single expression, 
signed values implicitly cast to unsigned

 Including comparison operations <, >, ==, <=, >=
 Examples for W = 32:    TMIN = -2,147,483,648 ,     TMAX = 2,147,483,647

¢ Constant1 Constant2 Relation Evaluation
0 0U
-1 0
-1 0U
2147483647 -2147483647-1 
2147483647U -2147483647-1 
-1 -2 
(unsigned)-1 -2 
2147483647 2147483648U 
2147483647 (int) 2147483648U 



43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

¢ Bit pattern is maintained
¢ But reinterpreted
¢ Can have unexpected effects: adding or subtracting 2w

¢ Expression containing signed and unsigned int
 int is cast to unsigned!!

Summary
Casting Signed ↔ Unsigned: Basic Rules
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Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

¢ Byte Ordering
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Sign Extension
¢ Task:
 Given w-bit signed integer x
 Convert it to w+k-bit integer with same value

¢ Rule:
 Make k copies of sign bit:
 X’ =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X’ • • • • • •

• • •

w

wk
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Sign Extension: Simple Example

10 = 

-16 8 4 2 1

0 1 0 1 0

10 = 

-32 16 8 4 2 1

0 0 1 0 1 0

-10 = 

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 = 

Positive number Negative number
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Truncation
¢ Task:
 Given k+w-bit signed or unsigned integer X
 Convert it to w-bit integer X’ with same value for “small enough” X

¢ Rule:
 Drop top k bits:
 X’ =  xw–1 , xw–2 ,…, x0

• • •

• • •X’
w

X • • • • • •

wk
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Truncation: Simple Example

10 = 

-16 8 4 2 1

0 1 0 1 0

-6 = 

-8 4 2 1

1 0 1 0

-10 = 

-16 8 4 2 1

1 0 1 1 0

6 = 

-8 4 2 1

0 1 1 0

Sign change

2 = 

-16 8 4 2 1

0 0 0 1 0

2 = 

-8 4 2 1

0 0 1 0

-6 = 

-16 8 4 2 1

1 1 0 1 0

-6 = 

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6
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Summary:
Expanding, Truncating: Basic Rules
¢ Expanding (e.g., short int to int)
 Unsigned: zeros added
 Signed: sign extension
 Both yield expected result

¢ Truncating (e.g., unsigned to unsigned short)
 Unsigned/signed: bits are truncated
 Result reinterpreted
 Unsigned: mod operation
 Signed: similar to mod
 For small (in magnitude) numbers yields expected behavior
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Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

¢ Byte Ordering
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Unsigned Addition

¢ Standard Addition Function
 Ignores carry output

¢ Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •

• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001
+  1101 0101
1 1011 1110
1011 1110

E9
+ D5
1BE
BE

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

He
x
De
cim
al

Bin
ary

223
+ 213
446
190

unsigned char
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Two’s Complement Addition

¢ TAdd and UAdd have Identical Bit-Level Behavior
 Signed vs. unsigned addition in C:
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);

t = u + v

 Will give s == t

• • •

• • •
u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

1110 1001
+  1101 0101
1 1011 1110
1011 1110

E9
+ D5
1BE
BE

-23
+ -43
-66
-66
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Integer Addition

Visualizing “True Sum” Integer Addition

¢ Integer Addition
 4-bit integers u, v
 Compute true sum 

Add4(u , v)
 Values increase linearly 

with u and v
 Forms planar surface

Add4(u , v)

u

v
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Visualizing Unsigned Addition

¢ Wraps Around
 If true sum ≥ 2w

 At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow
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Visualizing 2’s Complement Addition

¢ Values
 4-bit two’s comp.
 Range from -8 to +7

¢ Wraps Around
 If sum ³ 2w–1

 Becomes negative
 At most once

 If sum < –2w–1

 Becomes positive
 At most once

TAdd4(u , v)

u

v
PosOver

NegOver
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Multiplication
¢ Goal: Computing Product of w-bit numbers x, y

 Either signed or unsigned

¢ Result: Same as computing ideal, exact result x*y and keeping 
w lower bits.

¢ Ideal,exact results can be bigger than w bits
 Worst case is up to 2w bits

 Unsigned, because all bits are magnitude
 Signed, but only for Tmin*Tmin, because anything added to Tmin

reduces its magnitude and Tmax is less than Tmin.

¢ So, maintaining exact results…
 would need to keep expanding word size with each product computed
 Impossible in hardware (at least without limits), as all resources are finite
 In practice, is done in software, if needed

 e.g., by “arbitrary precision” arithmetic packages
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Power-of-2 Multiply with Shift
¢ Operation
 u << k gives u * 2k

 Both signed and unsigned

¢ Examples
 u << 3 == u * 8
 (u << 5) – (u << 3) == u * 24

 Most machines shift and add faster than multiply
 Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u
2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••
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Unsigned Power-of-2 Divide with Shift
¢ Quotient of Unsigned by Power of 2
 u >> k gives  ë u / 2k û

 Uses logical shift

 Division Computed Hex Binary 
x 15213 15213 3B 6D 00111011 01101101 
x >> 1 7606.5 7606 1D B6 00011101 10110110 
x >> 4 950.8125 950 03 B6 00000011 10110110 
x >> 8 59.4257813 59 00 3B 00000000 00111011 
 

0 0 1 0 0 0•••

u
2k/

u / 2kDivision: 

Operands:
•••

k
••• •••

•••0 0 0••• •••

ë u / 2k û •••Result:

.

Binary Point

0

0 0 0•••0
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Signed Power-of-2 Divide with Shift
¢ Quotient of Signed by Power of 2
 x >> k gives  ë x / 2k û

 Uses arithmetic shift
 Rounds to the left, not towards zero (Unlikely to be what is expected, introduces a 

bias).

0 0 1 0 0 0•••
x
2k/

x / 2kDivision: 

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary 
x -15213 -15213 C4 93 11000100 10010011 
x >> 1 -7606.5 -7607 E2 49  11100010 01001001 
x >> 4 -950.8125 -951 FC 49 11111100 01001001 
x >> 8 -59.4257813 -60 FF C4 11111111 11000100 
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Round-toward-0 Divide
¢ Quotient of Negative Number by Power of 2
 Want  é x / 2k ù (Round Toward 0)
 Compute as  ë (x+(2k-1))/ 2k û

 In C: (x + (1<<k)-1) >> k
 Biases dividend toward 0

Case 1: No rounding

Divisor: 

Dividend:

0 0 1 0 0 0•••

u

2k/

é u / 2k ù

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect
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Correct Power-of-2 Divide (Cont.)

Divisor: 

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/
é x / 2k ù

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1
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Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

¢ Byte Ordering
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Byte Ordering

¢ So, how are the bytes within a multi-byte word ordered in 
memory?

¢ Conventions
 Big Endian: Sun (Oracle SPARC), PPC Mac, Internet

 Least significant byte has highest address
 Little Endian: x86, ARM processors running Android, iOS, and Linux

 Least significant byte has lowest address

¢ Becomes a concern when data is communicated
 Over a network, via files, etc. 

¢ Important notes
 Bits are not reversed, as the low order bit is the reference point. 
 Doesn’t affect chars, or strings (arrays of chars), as chars are only one byte
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Byte Ordering Example

¢ Example
 Variable x has 4-byte value of 0x01234567
 Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01
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Address Instruction Code Assembly Rendition
8048365: 5b                   pop    %ebx

8048366: 81 c3 ab 12 00 00    add    $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl   $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

¢ Disassembly
 Text representation of binary machine code
 Generated by program that reads the machine code

¢ Example Fragment

¢ Deciphering Numbers
 Value: 0x12ab

 Pad to 32 bits: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse: ab 12 00 00
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Today: Bits, Bytes, and Integers

¢ Representing information as bits CSAPP 2.1
¢ Bit-level manipulations
¢ Integers CSAPP 2.2
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating

 Addition, negation, multiplication, shifting CSAPP 2.3
¢ Byte Ordering CSAPP 2.1.3

Questions?


