
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

14-513 18-613

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Please read pinned piazza posts!
Use the 15-213 shark machines!

Bootcamp: Sun 1-3:30 Rashid

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

From Bits through Integers

15-213/14-513/15-513:
Introduction to Computer Systems

2nd Lecture, Jan 18, 2024

Instructors:
David Andersen
Nathan Beckmann
Brian Railing

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bits, Bytes, and Integers

¢ Representing information as bits CSAPP 2.1
¢ Bit-level manipulations
¢ Integers CSAPP 2.2
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating

 Addition, negation, multiplication, shifting CSAPP 2.3
¢ Byte Ordering CSAPP 2.1.3

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Analog Computers
¢ Before digital computers there were analog computers.

¢ Consider a couple of simple analog computers:
 A simple circuit can allow one to adjust voltages using variable

resistors and measure the output using a volt meter:

 A simple network of adjustable parallel resistors can allow one to
find the average of the inputs.

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-
Summer-Calculator.phtml

https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-
without-a-transistor-op-amp-and-any-external-supply

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-without-a-transistor-op-amp-and-any-external-supply

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Needing Less Accuracy+Precision is Easier
¢ We don’t try to measure exactly

 We just ask, is it high enough to be “On”, or
 Is it low enough to be “Off”.

¢ We have two states, so we have a binary, or 2-ary, system.
 We represent these states as 0 and 1

¢ Now we can easily interpret, communicate, and duplicate signals well enough to know
what they mean.

0.0V
0.2V

0.9V
1.1V

0 1 0

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Binary Representation
¢ Binary representation leads to a simple binary, i.e. base-2,

numbering system
 0 represents 0
 1 represents 1
 Each “place” represents a power of two, exactly as each place in our

usual “base 10”, 10-ary numbering system represents a power of ten

¢ By encoding/interpreting sets of bits in various ways, we can
represent different things:
 Operations to be executed by the processor, numbers, enumerable

things, such as text characters

¢ As long as we can assign it to a discrete number, we can
represent it in binary

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Binary Representation:
Simple Numbers
¢ For example, we can count in binary, a base-2 numbering

system
 000, 001, 010, 011, 100, 101, 110, 111, …

 000 = 0*22 + 0*21 + 0*20 = 0 (in decimal)
 001 = 0*22 + 0*21 + 1*20 = 1 (in decimal)
 010 = 0*22 + 1*21 + 0*20 = 2 (in decimal)
 011 = 0*22 + 1*21 + 1*20 = 3 (in decimal)
 Etc.

¢ For reference, consider some base-10 examples:
 000 = 0*102 + 0*101 + 0*100

 001 = 0*102 + 0*101 + 1*100

 357 = 3*102 + 5*101 + 7*100

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Hexadecimal and Octal

¢ Writing out numbers in binary takes too many digits

¢ We want a way to represent numbers more densely such that
fewer digits are required
 But also such that it is easy to get at the bits that we want

¢ Any power-of-two base provides this property
 Octal, e.g. base-8, and hexadecimal, e.g. base-16 are the closest to our

familiar base-10.
 Each has been used by “computer people” over time
 Hexadecimal is often preferred because it is denser.

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Hexadecimal
¢ Hexadecimal 0016 to FF16
 Base 16 number representation
 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

¢ Consider 1A2B in Hexadecimal:
 1*163 + A*162 + 2*161 + B*160

 1*163 + 10*162 + 2*161 + 11*160 = 6699 (decimal)

 The C Language prefixes hexadecimal numbers with “0x”
so they aren’t confused with decimal numbers

 Write FA1D37B16 in C as
 0xFA1D37B
 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

15213: 0011 1011 0110 1101

3 B 6 D

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

¢ Byte Ordering

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Boolean Algebra
¢ Developed by George Boole in 19th Century

 Algebraic representation of logic
 Encode “True” as 1 and “False” as 0

And
 A&B = 1 when both A=1 and B=1

Or
 A|B = 1 when either A=1 or B=1

Not
 ~A = 1 when A=0

Exclusive-Or (Xor)
 A^B = 1 when either A=1 or B=1, but not both

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

General Boolean Algebras

¢ Operate on Bit Vectors
 Operations applied bitwise

¢ All of the Properties of Boolean Algebra Apply

01101001
& 01010101
01000001

01101001
| 01010101
01111101

01101001
^ 01010101
00111100

~ 01010101
1010101001000001 01111101 00111100 10101010

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Example: Representing & Manipulating Sets

¢ Representation
 Width w bit vector represents subsets of {0, …, w–1}
 aj = 1 if j ∈ A

 01101001 { 0, 3, 5, 6 }
 76543210

 01010101 { 0, 2, 4, 6 }
 76543210

¢ Operations
 & Intersection 01000001 { 0, 6 }
 | Union 01111101 { 0, 2, 3, 4, 5, 6 }
 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
 ~ Complement 10101010 { 1, 3, 5, 7 }

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bit-Level Operations in C

¢ Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

¢ Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102
 ~0x00 → 0xFF

 ~000000002 → 111111112
 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012
 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bit-Level Operations in C

¢ Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

¢ Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102
 ~0x00 → 0xFF

 ~000000002 → 111111112
 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012
 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

¢ Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

¢ Examples (Char data type)
 ~0x41 → 1011 11100xBE~010000012 → 101111102
 ~0x00 → 1111 11110xF~000000002 → 1111112
 0x69 & 0x55: 0x69 | 0x55:

0110 1001 0110 1001

& 0101 0101 | 0101 0101
----------------- -----------------

0100 0001011010 0111 1101011010012 012 &
010101012 → 010000012
0x7D

 011010012 | 010101012 → 011111012

Bit-Level Operations in C

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Contrast: Logic Operations in C

¢ Contrast to Bit-Level Operators
 Logic Operations: &&, ||, !

 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination

¢ Examples (char data type)
 !0x41 → 0x00
 !0x00 → 0x01
 !!0x41→ 0x01

 0x69 && 0x55 → 0x01
 0x69 || 0x55 → 0x01
 p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…
Super common C programming pitfall!

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Shift Operations

¢ Left Shift: x << y
 Shift bit-vector x left y positions

– Throw away extra bits on left
 Fill with 0’s on right

¢ Right Shift: x >> y
 Shift bit-vector x right y positions

 Throw away extra bits on right
 Logical shift

 Fill with 0’s on left
 Arithmetic shift

 Replicate most significant bit on left

¢ Undefined Behavior
 Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Binary Number Lines
¢ In binary, the number of bits in the data type size

determines the number of points on the number line.
 We can assign the points any meaning we’d like

¢ Consider the following examples:
 1 bit number line

0 1
 2 bit number line

00 01 10 11
 3 bit number line

000 001 010 011 100 101 110 111

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Some Purely Imaginary Examples

¢ 3 bit number line

-1/16 -1/8 -1/4 0 1/16 1/8 1/4 1/2

0 1 2 3 4 5 6 7

-4 -3 -2 -1 0 1 2 3

A B C D E F G H

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Overflow

¢ Let’s consider a simple 3 digit number line:

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

¢ What happens if we add 1 to 7?
 In other words, what happens if we add 1 to 111?

¢ 111+ 001 = 1 000
 But, we only get 3 bits – so we lose the leading 1.
 This is called overflow

¢ The result is 000

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Modulus Arithmetic

¢ Let’s explore this idea of overflow some more
 111 + 001 = 1 000 = 000
 111 + 010 = 1 001 = 001
 111 + 011 = 1 010 = 010
 111 + 100 = 1 011 = 011
 …
 111 + 110 = 1 101 = 101
 111 + 111 = 1 110 = 110

¢ So, arithmetic “wraps around” when it gets “too positive”

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Unsigned and Non-Negative Integers

¢ We’ll use the term “ints” to mean the finite set of integer
numbers that we can represent on a number line enumerated by
some fixed number of bits, i.e. bit width.

¢ We normally represent unsigned and non-negative int using
simple binary as we have already discussed
 An “unsigned” int is any int on a number line, e.g. of a data type, that

doesn’t contain any negative numbers
 A non-negative number is a number greater than or equal to (>=) 0 on a

number line, e.g. of a data type, that does contain negative numbers

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How represent negative Numbers?
¢ We could use the leading bit as a sign bit:
 0 means non-negative
 1 means negative

000 001 010 011 100 101 110 111

0 1 2 3 -0 -1 -2 -3

¢ This has some benefits
 It lets us represent negative and non-negative numbers
 0 represents 0

¢ It also has some drawbacks
 There is a -0, which is the same as 0, except that it is different
 How to add such numbers 1 + -1 should equal 0

 But, by simple math, 001 + 101 = 110, which is -2?

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

A Magic Trick!
¢ Let’s just start with three ideas:
 1 should be represented as 1
 -1 + 1 = 0
 We want addition to work in the familiar way, with simple rules.

¢ We want a situation where “-1” + 1 = 0

¢ Consider a 3 bit number:
 001 + “-1” = 0
 001 + 111 = 0

 Remember 001 + 111 = 1 000, and the leading one is lost to
overflow.

¢ “-1” = 111
 Yep!

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Negative Numbers

¢ Well, if 111 is -1, what is -2?
 -1 - 1
 111 – 001 = 110

¢ Does that really work?
 If it does -2 + 2 = 0
 110 + 010 = 1 000 = 000

¢ -2 + 5 should be 3, right?
 110 + 101 = 1 011 = 011

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Finding –x the easy way

¢ Given a non-negative number in binary, e.g. 5, represented
with a fixed bit width, e.g. 4
 0101

¢ We can find its negative by flipping each bit and adding 1
 0101 This is 5
 1010 This is the “ones complement of 5”, e.g. 5 with bits flipped
 1011 This is the “twos complement of 5”, e.g. 5 with the bits

flipped and 1 added
 0101 + 1011 = 1 0000 = 0000
 -x = ~x+1

¢ Because of the fixed width, the “two’s complement” of a
number can be used as its negative.

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why Does This Work?
¢ Consider any number and its (ones) complement:
 0101
 1010

¢ They are called complements because complementary bits
are set. As a result, if they are added, all bits are necessarily
set:
 0101 + 1010 = 1111

¢ Adding 1 to the sum of a number and its complement
necessarily results in a 0 due to overflow
 (0101 + 1010) + 1 = 1111 + 1 = 1 0000 = 0000

¢ And if x + y = 0, y must equal –x

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why Does This Work? Cont.

¢ If x + y = 0
 y must equal –x

¢ So if x + (Complement(x) + 1) = 0
 Complement(x) + 1 must equal –x

¢ Another way of looking at it:
 if x + (Complement(x) + 1) = 0
 x + Complement(x) = -1
 x = -1 - Complement(x)
 -x = 1 + Complement(x)

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Visualizing Two’s Complement

¢ Numbers “wrap around” with -1 at the very end

000 001 010 011 100 101 110 111

0 1 2 3 -4 -3 -2 -1

¢ A few things to note:
 All negative numbers start with a ”1”

 E.g. 100 is “-4”
 You can view the leading “1” as introducing a “-4”

 E.g. 101 = 1*-4+0*2+1*1= -3
 But 010 = 0*-4+1*2+0*1 = 2

 -4 is missing a positive partner

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Complement & Increment Examples

 Decimal Hex Binary
x -32768 80 00 10000000 00000000
~x 32767 7F FF 01111111 11111111
~x+1 -32768 80 00 10000000 00000000

x = Tmin (The most negative two’s complement number)

 Decimal Hex Binary
0 0 00 00 00000000 00000000
~0 -1 FF FF 11111111 11111111
~0+1 0 00 00 00000000 00000000

x = 0

Canonical counter example

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Encoding Integers: Dense Form

short int x = 15213;
short int y = -15213;

¢ C does not mandate using two’s complement
 But, most machines do, and we will assume so

¢ C short (2 bytes long)

¢ Sign Bit
 For 2’s complement, most significant bit indicates sign

 0 for nonnegative, 1 for negative

B2T (X) = -xw-1 ×2
w-1 + xi ×2

i

i=0

w-2

åB2U(X) = xi ×2
i

i=0

w-1

å
Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Numeric Ranges
¢ Unsigned Values
 UMin = 0

000…0
 UMax = 2w – 1

111…1

¢ Two’s Complement Values
 TMin = –2w–1

100…0
 TMax = 2w–1 – 1

011…1

 Minus 1
111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/39547/quizzes/118137

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

¢ Byte Ordering

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
¢ 2’s Comp. ® Unsigned
 Ordering Inversion
 Negative ® Big Positive

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Signed vs. Unsigned in C
¢ Constants
 By default are considered to be signed integers
 Unsigned if have “U” as suffix

0U, 4294967259U

¢ Casting
 Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;
uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls
tx = ux; int fun(unsigned u);
uy = ty; uy = fun(tx);

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

0 0U == unsigned
-1 0 < signed

-1 0U > unsigned
2147483647 -2147483648 > signed

2147483647U -2147483648 < unsigned
-1 -2 > signed

(unsigned) -1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Casting Surprises
¢ Expression Evaluation

 If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

 Including comparison operations <, >, ==, <=, >=
 Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

¢ Constant1 Constant2 Relation Evaluation
0 0U
-1 0
-1 0U
2147483647 -2147483647-1
2147483647U -2147483647-1
-1 -2
(unsigned)-1 -2
2147483647 2147483648U
2147483647 (int) 2147483648U

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

¢ Bit pattern is maintained
¢ But reinterpreted
¢ Can have unexpected effects: adding or subtracting 2w

¢ Expression containing signed and unsigned int
 int is cast to unsigned!!

Summary
Casting Signed ↔ Unsigned: Basic Rules

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

¢ Byte Ordering

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Sign Extension
¢ Task:
 Given w-bit signed integer x
 Convert it to w+k-bit integer with same value

¢ Rule:
 Make k copies of sign bit:
 X’ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X’ • • • • • •

• • •

w

wk

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 =

Positive number Negative number

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Truncation
¢ Task:
 Given k+w-bit signed or unsigned integer X
 Convert it to w-bit integer X’ with same value for “small enough” X

¢ Rule:
 Drop top k bits:
 X’ = xw–1 , xw–2 ,…, x0

• • •

• • •X’
w

X • • • • • •

wk

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules
¢ Expanding (e.g., short int to int)
 Unsigned: zeros added
 Signed: sign extension
 Both yield expected result

¢ Truncating (e.g., unsigned to unsigned short)
 Unsigned/signed: bits are truncated
 Result reinterpreted
 Unsigned: mod operation
 Signed: similar to mod
 For small (in magnitude) numbers yields expected behavior

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

¢ Byte Ordering

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Unsigned Addition

¢ Standard Addition Function
 Ignores carry output

¢ Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •

• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001
+ 1101 0101
1 1011 1110
1011 1110

E9
+ D5
1BE
BE

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

He
x
De
cim
al

Bin
ary

223
+ 213
446
190

unsigned char

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Two’s Complement Addition

¢ TAdd and UAdd have Identical Bit-Level Behavior
 Signed vs. unsigned addition in C:
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);

t = u + v

 Will give s == t

• • •

• • •
u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

1110 1001
+ 1101 0101
1 1011 1110
1011 1110

E9
+ D5
1BE
BE

-23
+ -43
-66
-66

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing “True Sum” Integer Addition

¢ Integer Addition
 4-bit integers u, v
 Compute true sum

Add4(u , v)
 Values increase linearly

with u and v
 Forms planar surface

Add4(u , v)

u

v

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

¢ Wraps Around
 If true sum ≥ 2w

 At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

-8 -6 -4 -2 0 2 4 6
-8

-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

¢ Values
 4-bit two’s comp.
 Range from -8 to +7

¢ Wraps Around
 If sum ³ 2w–1

 Becomes negative
 At most once

 If sum < –2w–1

 Becomes positive
 At most once

TAdd4(u , v)

u

v
PosOver

NegOver

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Multiplication
¢ Goal: Computing Product of w-bit numbers x, y

 Either signed or unsigned

¢ Result: Same as computing ideal, exact result x*y and keeping
w lower bits.

¢ Ideal,exact results can be bigger than w bits
 Worst case is up to 2w bits

 Unsigned, because all bits are magnitude
 Signed, but only for Tmin*Tmin, because anything added to Tmin

reduces its magnitude and Tmax is less than Tmin.

¢ So, maintaining exact results…
 would need to keep expanding word size with each product computed
 Impossible in hardware (at least without limits), as all resources are finite
 In practice, is done in software, if needed

 e.g., by “arbitrary precision” arithmetic packages

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Power-of-2 Multiply with Shift
¢ Operation
 u << k gives u * 2k

 Both signed and unsigned

¢ Examples
 u << 3 == u * 8
 (u << 5) – (u << 3) == u * 24

 Most machines shift and add faster than multiply
 Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u
2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Unsigned Power-of-2 Divide with Shift
¢ Quotient of Unsigned by Power of 2
 u >> k gives ë u / 2k û

 Uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101
x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u
2k/

u / 2kDivision:

Operands:
•••

k
••• •••

•••0 0 0••• •••

ë u / 2k û •••Result:

.

Binary Point

0

0 0 0•••0

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Signed Power-of-2 Divide with Shift
¢ Quotient of Signed by Power of 2
 x >> k gives ë x / 2k û

 Uses arithmetic shift
 Rounds to the left, not towards zero (Unlikely to be what is expected, introduces a

bias).

0 0 1 0 0 0•••
x
2k/

x / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary
x -15213 -15213 C4 93 11000100 10010011
x >> 1 -7606.5 -7607 E2 49 11100010 01001001
x >> 4 -950.8125 -951 FC 49 11111100 01001001
x >> 8 -59.4257813 -60 FF C4 11111111 11000100

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Round-toward-0 Divide
¢ Quotient of Negative Number by Power of 2
 Want é x / 2k ù (Round Toward 0)
 Compute as ë (x+(2k-1))/ 2k û

 In C: (x + (1<<k)-1) >> k
 Biases dividend toward 0

Case 1: No rounding

Divisor:

Dividend:

0 0 1 0 0 0•••

u

2k/

é u / 2k ù

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Divisor:

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/
é x / 2k ù

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

¢ Byte Ordering

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Byte Ordering

¢ So, how are the bytes within a multi-byte word ordered in
memory?

¢ Conventions
 Big Endian: Sun (Oracle SPARC), PPC Mac, Internet

 Least significant byte has highest address
 Little Endian: x86, ARM processors running Android, iOS, and Linux

 Least significant byte has lowest address

¢ Becomes a concern when data is communicated
 Over a network, via files, etc.

¢ Important notes
 Bits are not reversed, as the low order bit is the reference point.
 Doesn’t affect chars, or strings (arrays of chars), as chars are only one byte

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Byte Ordering Example

¢ Example
 Variable x has 4-byte value of 0x01234567
 Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

¢ Disassembly
 Text representation of binary machine code
 Generated by program that reads the machine code

¢ Example Fragment

¢ Deciphering Numbers
 Value: 0x12ab

 Pad to 32 bits: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse: ab 12 00 00

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

¢ Representing information as bits CSAPP 2.1
¢ Bit-level manipulations
¢ Integers CSAPP 2.2
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating

 Addition, negation, multiplication, shifting CSAPP 2.3
¢ Byte Ordering CSAPP 2.1.3

Questions?

